Properties

Label 170.2.b.b.101.1
Level $170$
Weight $2$
Character 170.101
Analytic conductor $1.357$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [170,2,Mod(101,170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(170, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("170.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 170.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.35745683436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 170.101
Dual form 170.2.b.b.101.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -3.00000i q^{3} +1.00000 q^{4} -1.00000i q^{5} -3.00000i q^{6} +4.00000i q^{7} +1.00000 q^{8} -6.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -3.00000i q^{3} +1.00000 q^{4} -1.00000i q^{5} -3.00000i q^{6} +4.00000i q^{7} +1.00000 q^{8} -6.00000 q^{9} -1.00000i q^{10} -2.00000i q^{11} -3.00000i q^{12} +1.00000 q^{13} +4.00000i q^{14} -3.00000 q^{15} +1.00000 q^{16} +(-4.00000 + 1.00000i) q^{17} -6.00000 q^{18} +7.00000 q^{19} -1.00000i q^{20} +12.0000 q^{21} -2.00000i q^{22} +6.00000i q^{23} -3.00000i q^{24} -1.00000 q^{25} +1.00000 q^{26} +9.00000i q^{27} +4.00000i q^{28} -3.00000i q^{29} -3.00000 q^{30} +7.00000i q^{31} +1.00000 q^{32} -6.00000 q^{33} +(-4.00000 + 1.00000i) q^{34} +4.00000 q^{35} -6.00000 q^{36} -2.00000i q^{37} +7.00000 q^{38} -3.00000i q^{39} -1.00000i q^{40} -8.00000i q^{41} +12.0000 q^{42} -8.00000 q^{43} -2.00000i q^{44} +6.00000i q^{45} +6.00000i q^{46} +9.00000 q^{47} -3.00000i q^{48} -9.00000 q^{49} -1.00000 q^{50} +(3.00000 + 12.0000i) q^{51} +1.00000 q^{52} -11.0000 q^{53} +9.00000i q^{54} -2.00000 q^{55} +4.00000i q^{56} -21.0000i q^{57} -3.00000i q^{58} -5.00000 q^{59} -3.00000 q^{60} +1.00000i q^{61} +7.00000i q^{62} -24.0000i q^{63} +1.00000 q^{64} -1.00000i q^{65} -6.00000 q^{66} -10.0000 q^{67} +(-4.00000 + 1.00000i) q^{68} +18.0000 q^{69} +4.00000 q^{70} -1.00000i q^{71} -6.00000 q^{72} +9.00000i q^{73} -2.00000i q^{74} +3.00000i q^{75} +7.00000 q^{76} +8.00000 q^{77} -3.00000i q^{78} -1.00000i q^{80} +9.00000 q^{81} -8.00000i q^{82} +6.00000 q^{83} +12.0000 q^{84} +(1.00000 + 4.00000i) q^{85} -8.00000 q^{86} -9.00000 q^{87} -2.00000i q^{88} -1.00000 q^{89} +6.00000i q^{90} +4.00000i q^{91} +6.00000i q^{92} +21.0000 q^{93} +9.00000 q^{94} -7.00000i q^{95} -3.00000i q^{96} -1.00000i q^{97} -9.00000 q^{98} +12.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 12 q^{9} + 2 q^{13} - 6 q^{15} + 2 q^{16} - 8 q^{17} - 12 q^{18} + 14 q^{19} + 24 q^{21} - 2 q^{25} + 2 q^{26} - 6 q^{30} + 2 q^{32} - 12 q^{33} - 8 q^{34} + 8 q^{35} - 12 q^{36} + 14 q^{38} + 24 q^{42} - 16 q^{43} + 18 q^{47} - 18 q^{49} - 2 q^{50} + 6 q^{51} + 2 q^{52} - 22 q^{53} - 4 q^{55} - 10 q^{59} - 6 q^{60} + 2 q^{64} - 12 q^{66} - 20 q^{67} - 8 q^{68} + 36 q^{69} + 8 q^{70} - 12 q^{72} + 14 q^{76} + 16 q^{77} + 18 q^{81} + 12 q^{83} + 24 q^{84} + 2 q^{85} - 16 q^{86} - 18 q^{87} - 2 q^{89} + 42 q^{93} + 18 q^{94} - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/170\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(137\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 3.00000i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i
\(6\) 3.00000i 1.22474i
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 1.00000 0.353553
\(9\) −6.00000 −2.00000
\(10\) 1.00000i 0.316228i
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 3.00000i 0.866025i
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 4.00000i 1.06904i
\(15\) −3.00000 −0.774597
\(16\) 1.00000 0.250000
\(17\) −4.00000 + 1.00000i −0.970143 + 0.242536i
\(18\) −6.00000 −1.41421
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 12.0000 2.61861
\(22\) 2.00000i 0.426401i
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 3.00000i 0.612372i
\(25\) −1.00000 −0.200000
\(26\) 1.00000 0.196116
\(27\) 9.00000i 1.73205i
\(28\) 4.00000i 0.755929i
\(29\) 3.00000i 0.557086i −0.960424 0.278543i \(-0.910149\pi\)
0.960424 0.278543i \(-0.0898515\pi\)
\(30\) −3.00000 −0.547723
\(31\) 7.00000i 1.25724i 0.777714 + 0.628619i \(0.216379\pi\)
−0.777714 + 0.628619i \(0.783621\pi\)
\(32\) 1.00000 0.176777
\(33\) −6.00000 −1.04447
\(34\) −4.00000 + 1.00000i −0.685994 + 0.171499i
\(35\) 4.00000 0.676123
\(36\) −6.00000 −1.00000
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 7.00000 1.13555
\(39\) 3.00000i 0.480384i
\(40\) 1.00000i 0.158114i
\(41\) 8.00000i 1.24939i −0.780869 0.624695i \(-0.785223\pi\)
0.780869 0.624695i \(-0.214777\pi\)
\(42\) 12.0000 1.85164
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 2.00000i 0.301511i
\(45\) 6.00000i 0.894427i
\(46\) 6.00000i 0.884652i
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 3.00000i 0.433013i
\(49\) −9.00000 −1.28571
\(50\) −1.00000 −0.141421
\(51\) 3.00000 + 12.0000i 0.420084 + 1.68034i
\(52\) 1.00000 0.138675
\(53\) −11.0000 −1.51097 −0.755483 0.655168i \(-0.772598\pi\)
−0.755483 + 0.655168i \(0.772598\pi\)
\(54\) 9.00000i 1.22474i
\(55\) −2.00000 −0.269680
\(56\) 4.00000i 0.534522i
\(57\) 21.0000i 2.78152i
\(58\) 3.00000i 0.393919i
\(59\) −5.00000 −0.650945 −0.325472 0.945552i \(-0.605523\pi\)
−0.325472 + 0.945552i \(0.605523\pi\)
\(60\) −3.00000 −0.387298
\(61\) 1.00000i 0.128037i 0.997949 + 0.0640184i \(0.0203916\pi\)
−0.997949 + 0.0640184i \(0.979608\pi\)
\(62\) 7.00000i 0.889001i
\(63\) 24.0000i 3.02372i
\(64\) 1.00000 0.125000
\(65\) 1.00000i 0.124035i
\(66\) −6.00000 −0.738549
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) −4.00000 + 1.00000i −0.485071 + 0.121268i
\(69\) 18.0000 2.16695
\(70\) 4.00000 0.478091
\(71\) 1.00000i 0.118678i −0.998238 0.0593391i \(-0.981101\pi\)
0.998238 0.0593391i \(-0.0188993\pi\)
\(72\) −6.00000 −0.707107
\(73\) 9.00000i 1.05337i 0.850060 + 0.526685i \(0.176565\pi\)
−0.850060 + 0.526685i \(0.823435\pi\)
\(74\) 2.00000i 0.232495i
\(75\) 3.00000i 0.346410i
\(76\) 7.00000 0.802955
\(77\) 8.00000 0.911685
\(78\) 3.00000i 0.339683i
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 9.00000 1.00000
\(82\) 8.00000i 0.883452i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 12.0000 1.30931
\(85\) 1.00000 + 4.00000i 0.108465 + 0.433861i
\(86\) −8.00000 −0.862662
\(87\) −9.00000 −0.964901
\(88\) 2.00000i 0.213201i
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 6.00000i 0.632456i
\(91\) 4.00000i 0.419314i
\(92\) 6.00000i 0.625543i
\(93\) 21.0000 2.17760
\(94\) 9.00000 0.928279
\(95\) 7.00000i 0.718185i
\(96\) 3.00000i 0.306186i
\(97\) 1.00000i 0.101535i −0.998711 0.0507673i \(-0.983833\pi\)
0.998711 0.0507673i \(-0.0161667\pi\)
\(98\) −9.00000 −0.909137
\(99\) 12.0000i 1.20605i
\(100\) −1.00000 −0.100000
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 3.00000 + 12.0000i 0.297044 + 1.18818i
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 1.00000 0.0980581
\(105\) 12.0000i 1.17108i
\(106\) −11.0000 −1.06841
\(107\) 16.0000i 1.54678i −0.633932 0.773389i \(-0.718560\pi\)
0.633932 0.773389i \(-0.281440\pi\)
\(108\) 9.00000i 0.866025i
\(109\) 19.0000i 1.81987i −0.414751 0.909935i \(-0.636131\pi\)
0.414751 0.909935i \(-0.363869\pi\)
\(110\) −2.00000 −0.190693
\(111\) −6.00000 −0.569495
\(112\) 4.00000i 0.377964i
\(113\) 1.00000i 0.0940721i 0.998893 + 0.0470360i \(0.0149776\pi\)
−0.998893 + 0.0470360i \(0.985022\pi\)
\(114\) 21.0000i 1.96683i
\(115\) 6.00000 0.559503
\(116\) 3.00000i 0.278543i
\(117\) −6.00000 −0.554700
\(118\) −5.00000 −0.460287
\(119\) −4.00000 16.0000i −0.366679 1.46672i
\(120\) −3.00000 −0.273861
\(121\) 7.00000 0.636364
\(122\) 1.00000i 0.0905357i
\(123\) −24.0000 −2.16401
\(124\) 7.00000i 0.628619i
\(125\) 1.00000i 0.0894427i
\(126\) 24.0000i 2.13809i
\(127\) −15.0000 −1.33103 −0.665517 0.746382i \(-0.731789\pi\)
−0.665517 + 0.746382i \(0.731789\pi\)
\(128\) 1.00000 0.0883883
\(129\) 24.0000i 2.11308i
\(130\) 1.00000i 0.0877058i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) −6.00000 −0.522233
\(133\) 28.0000i 2.42791i
\(134\) −10.0000 −0.863868
\(135\) 9.00000 0.774597
\(136\) −4.00000 + 1.00000i −0.342997 + 0.0857493i
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 18.0000 1.53226
\(139\) 14.0000i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) 4.00000 0.338062
\(141\) 27.0000i 2.27381i
\(142\) 1.00000i 0.0839181i
\(143\) 2.00000i 0.167248i
\(144\) −6.00000 −0.500000
\(145\) −3.00000 −0.249136
\(146\) 9.00000i 0.744845i
\(147\) 27.0000i 2.22692i
\(148\) 2.00000i 0.164399i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 3.00000i 0.244949i
\(151\) 22.0000 1.79033 0.895167 0.445730i \(-0.147056\pi\)
0.895167 + 0.445730i \(0.147056\pi\)
\(152\) 7.00000 0.567775
\(153\) 24.0000 6.00000i 1.94029 0.485071i
\(154\) 8.00000 0.644658
\(155\) 7.00000 0.562254
\(156\) 3.00000i 0.240192i
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) 33.0000i 2.61707i
\(160\) 1.00000i 0.0790569i
\(161\) −24.0000 −1.89146
\(162\) 9.00000 0.707107
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 8.00000i 0.624695i
\(165\) 6.00000i 0.467099i
\(166\) 6.00000 0.465690
\(167\) 2.00000i 0.154765i −0.997001 0.0773823i \(-0.975344\pi\)
0.997001 0.0773823i \(-0.0246562\pi\)
\(168\) 12.0000 0.925820
\(169\) −12.0000 −0.923077
\(170\) 1.00000 + 4.00000i 0.0766965 + 0.306786i
\(171\) −42.0000 −3.21182
\(172\) −8.00000 −0.609994
\(173\) 2.00000i 0.152057i 0.997106 + 0.0760286i \(0.0242240\pi\)
−0.997106 + 0.0760286i \(0.975776\pi\)
\(174\) −9.00000 −0.682288
\(175\) 4.00000i 0.302372i
\(176\) 2.00000i 0.150756i
\(177\) 15.0000i 1.12747i
\(178\) −1.00000 −0.0749532
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 6.00000i 0.447214i
\(181\) 10.0000i 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) 4.00000i 0.296500i
\(183\) 3.00000 0.221766
\(184\) 6.00000i 0.442326i
\(185\) −2.00000 −0.147043
\(186\) 21.0000 1.53979
\(187\) 2.00000 + 8.00000i 0.146254 + 0.585018i
\(188\) 9.00000 0.656392
\(189\) −36.0000 −2.61861
\(190\) 7.00000i 0.507833i
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) 3.00000i 0.216506i
\(193\) 2.00000i 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) 1.00000i 0.0717958i
\(195\) −3.00000 −0.214834
\(196\) −9.00000 −0.642857
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 12.0000i 0.852803i
\(199\) 11.0000i 0.779769i −0.920864 0.389885i \(-0.872515\pi\)
0.920864 0.389885i \(-0.127485\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 30.0000i 2.11604i
\(202\) −2.00000 −0.140720
\(203\) 12.0000 0.842235
\(204\) 3.00000 + 12.0000i 0.210042 + 0.840168i
\(205\) −8.00000 −0.558744
\(206\) 0 0
\(207\) 36.0000i 2.50217i
\(208\) 1.00000 0.0693375
\(209\) 14.0000i 0.968400i
\(210\) 12.0000i 0.828079i
\(211\) 10.0000i 0.688428i 0.938891 + 0.344214i \(0.111855\pi\)
−0.938891 + 0.344214i \(0.888145\pi\)
\(212\) −11.0000 −0.755483
\(213\) −3.00000 −0.205557
\(214\) 16.0000i 1.09374i
\(215\) 8.00000i 0.545595i
\(216\) 9.00000i 0.612372i
\(217\) −28.0000 −1.90076
\(218\) 19.0000i 1.28684i
\(219\) 27.0000 1.82449
\(220\) −2.00000 −0.134840
\(221\) −4.00000 + 1.00000i −0.269069 + 0.0672673i
\(222\) −6.00000 −0.402694
\(223\) 29.0000 1.94198 0.970992 0.239113i \(-0.0768565\pi\)
0.970992 + 0.239113i \(0.0768565\pi\)
\(224\) 4.00000i 0.267261i
\(225\) 6.00000 0.400000
\(226\) 1.00000i 0.0665190i
\(227\) 27.0000i 1.79205i −0.444001 0.896026i \(-0.646441\pi\)
0.444001 0.896026i \(-0.353559\pi\)
\(228\) 21.0000i 1.39076i
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) 6.00000 0.395628
\(231\) 24.0000i 1.57908i
\(232\) 3.00000i 0.196960i
\(233\) 3.00000i 0.196537i 0.995160 + 0.0982683i \(0.0313303\pi\)
−0.995160 + 0.0982683i \(0.968670\pi\)
\(234\) −6.00000 −0.392232
\(235\) 9.00000i 0.587095i
\(236\) −5.00000 −0.325472
\(237\) 0 0
\(238\) −4.00000 16.0000i −0.259281 1.03713i
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) −3.00000 −0.193649
\(241\) 4.00000i 0.257663i 0.991667 + 0.128831i \(0.0411226\pi\)
−0.991667 + 0.128831i \(0.958877\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) 1.00000i 0.0640184i
\(245\) 9.00000i 0.574989i
\(246\) −24.0000 −1.53018
\(247\) 7.00000 0.445399
\(248\) 7.00000i 0.444500i
\(249\) 18.0000i 1.14070i
\(250\) 1.00000i 0.0632456i
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 24.0000i 1.51186i
\(253\) 12.0000 0.754434
\(254\) −15.0000 −0.941184
\(255\) 12.0000 3.00000i 0.751469 0.187867i
\(256\) 1.00000 0.0625000
\(257\) 24.0000 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(258\) 24.0000i 1.49417i
\(259\) 8.00000 0.497096
\(260\) 1.00000i 0.0620174i
\(261\) 18.0000i 1.11417i
\(262\) 0 0
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) −6.00000 −0.369274
\(265\) 11.0000i 0.675725i
\(266\) 28.0000i 1.71679i
\(267\) 3.00000i 0.183597i
\(268\) −10.0000 −0.610847
\(269\) 25.0000i 1.52428i −0.647414 0.762138i \(-0.724150\pi\)
0.647414 0.762138i \(-0.275850\pi\)
\(270\) 9.00000 0.547723
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) −4.00000 + 1.00000i −0.242536 + 0.0606339i
\(273\) 12.0000 0.726273
\(274\) 8.00000 0.483298
\(275\) 2.00000i 0.120605i
\(276\) 18.0000 1.08347
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 14.0000i 0.839664i
\(279\) 42.0000i 2.51447i
\(280\) 4.00000 0.239046
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) 27.0000i 1.60783i
\(283\) 7.00000i 0.416107i −0.978117 0.208053i \(-0.933287\pi\)
0.978117 0.208053i \(-0.0667128\pi\)
\(284\) 1.00000i 0.0593391i
\(285\) −21.0000 −1.24393
\(286\) 2.00000i 0.118262i
\(287\) 32.0000 1.88890
\(288\) −6.00000 −0.353553
\(289\) 15.0000 8.00000i 0.882353 0.470588i
\(290\) −3.00000 −0.176166
\(291\) −3.00000 −0.175863
\(292\) 9.00000i 0.526685i
\(293\) −5.00000 −0.292103 −0.146052 0.989277i \(-0.546657\pi\)
−0.146052 + 0.989277i \(0.546657\pi\)
\(294\) 27.0000i 1.57467i
\(295\) 5.00000i 0.291111i
\(296\) 2.00000i 0.116248i
\(297\) 18.0000 1.04447
\(298\) −6.00000 −0.347571
\(299\) 6.00000i 0.346989i
\(300\) 3.00000i 0.173205i
\(301\) 32.0000i 1.84445i
\(302\) 22.0000 1.26596
\(303\) 6.00000i 0.344691i
\(304\) 7.00000 0.401478
\(305\) 1.00000 0.0572598
\(306\) 24.0000 6.00000i 1.37199 0.342997i
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) 8.00000 0.455842
\(309\) 0 0
\(310\) 7.00000 0.397573
\(311\) 16.0000i 0.907277i 0.891186 + 0.453638i \(0.149874\pi\)
−0.891186 + 0.453638i \(0.850126\pi\)
\(312\) 3.00000i 0.169842i
\(313\) 26.0000i 1.46961i −0.678280 0.734803i \(-0.737274\pi\)
0.678280 0.734803i \(-0.262726\pi\)
\(314\) 2.00000 0.112867
\(315\) −24.0000 −1.35225
\(316\) 0 0
\(317\) 20.0000i 1.12331i 0.827371 + 0.561656i \(0.189836\pi\)
−0.827371 + 0.561656i \(0.810164\pi\)
\(318\) 33.0000i 1.85055i
\(319\) −6.00000 −0.335936
\(320\) 1.00000i 0.0559017i
\(321\) −48.0000 −2.67910
\(322\) −24.0000 −1.33747
\(323\) −28.0000 + 7.00000i −1.55796 + 0.389490i
\(324\) 9.00000 0.500000
\(325\) −1.00000 −0.0554700
\(326\) 4.00000i 0.221540i
\(327\) −57.0000 −3.15211
\(328\) 8.00000i 0.441726i
\(329\) 36.0000i 1.98474i
\(330\) 6.00000i 0.330289i
\(331\) −19.0000 −1.04433 −0.522167 0.852843i \(-0.674876\pi\)
−0.522167 + 0.852843i \(0.674876\pi\)
\(332\) 6.00000 0.329293
\(333\) 12.0000i 0.657596i
\(334\) 2.00000i 0.109435i
\(335\) 10.0000i 0.546358i
\(336\) 12.0000 0.654654
\(337\) 23.0000i 1.25289i −0.779466 0.626445i \(-0.784509\pi\)
0.779466 0.626445i \(-0.215491\pi\)
\(338\) −12.0000 −0.652714
\(339\) 3.00000 0.162938
\(340\) 1.00000 + 4.00000i 0.0542326 + 0.216930i
\(341\) 14.0000 0.758143
\(342\) −42.0000 −2.27110
\(343\) 8.00000i 0.431959i
\(344\) −8.00000 −0.431331
\(345\) 18.0000i 0.969087i
\(346\) 2.00000i 0.107521i
\(347\) 27.0000i 1.44944i 0.689046 + 0.724718i \(0.258030\pi\)
−0.689046 + 0.724718i \(0.741970\pi\)
\(348\) −9.00000 −0.482451
\(349\) 12.0000 0.642345 0.321173 0.947021i \(-0.395923\pi\)
0.321173 + 0.947021i \(0.395923\pi\)
\(350\) 4.00000i 0.213809i
\(351\) 9.00000i 0.480384i
\(352\) 2.00000i 0.106600i
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 15.0000i 0.797241i
\(355\) −1.00000 −0.0530745
\(356\) −1.00000 −0.0529999
\(357\) −48.0000 + 12.0000i −2.54043 + 0.635107i
\(358\) 24.0000 1.26844
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 6.00000i 0.316228i
\(361\) 30.0000 1.57895
\(362\) 10.0000i 0.525588i
\(363\) 21.0000i 1.10221i
\(364\) 4.00000i 0.209657i
\(365\) 9.00000 0.471082
\(366\) 3.00000 0.156813
\(367\) 10.0000i 0.521996i 0.965339 + 0.260998i \(0.0840516\pi\)
−0.965339 + 0.260998i \(0.915948\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 48.0000i 2.49878i
\(370\) −2.00000 −0.103975
\(371\) 44.0000i 2.28437i
\(372\) 21.0000 1.08880
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 2.00000 + 8.00000i 0.103418 + 0.413670i
\(375\) 3.00000 0.154919
\(376\) 9.00000 0.464140
\(377\) 3.00000i 0.154508i
\(378\) −36.0000 −1.85164
\(379\) 8.00000i 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 7.00000i 0.359092i
\(381\) 45.0000i 2.30542i
\(382\) 10.0000 0.511645
\(383\) −19.0000 −0.970855 −0.485427 0.874277i \(-0.661336\pi\)
−0.485427 + 0.874277i \(0.661336\pi\)
\(384\) 3.00000i 0.153093i
\(385\) 8.00000i 0.407718i
\(386\) 2.00000i 0.101797i
\(387\) 48.0000 2.43998
\(388\) 1.00000i 0.0507673i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) −3.00000 −0.151911
\(391\) −6.00000 24.0000i −0.303433 1.21373i
\(392\) −9.00000 −0.454569
\(393\) 0 0
\(394\) 18.0000i 0.906827i
\(395\) 0 0
\(396\) 12.0000i 0.603023i
\(397\) 4.00000i 0.200754i 0.994949 + 0.100377i \(0.0320049\pi\)
−0.994949 + 0.100377i \(0.967995\pi\)
\(398\) 11.0000i 0.551380i
\(399\) 84.0000 4.20526
\(400\) −1.00000 −0.0500000
\(401\) 24.0000i 1.19850i 0.800561 + 0.599251i \(0.204535\pi\)
−0.800561 + 0.599251i \(0.795465\pi\)
\(402\) 30.0000i 1.49626i
\(403\) 7.00000i 0.348695i
\(404\) −2.00000 −0.0995037
\(405\) 9.00000i 0.447214i
\(406\) 12.0000 0.595550
\(407\) −4.00000 −0.198273
\(408\) 3.00000 + 12.0000i 0.148522 + 0.594089i
\(409\) −19.0000 −0.939490 −0.469745 0.882802i \(-0.655654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(410\) −8.00000 −0.395092
\(411\) 24.0000i 1.18383i
\(412\) 0 0
\(413\) 20.0000i 0.984136i
\(414\) 36.0000i 1.76930i
\(415\) 6.00000i 0.294528i
\(416\) 1.00000 0.0490290
\(417\) 42.0000 2.05675
\(418\) 14.0000i 0.684762i
\(419\) 10.0000i 0.488532i 0.969708 + 0.244266i \(0.0785470\pi\)
−0.969708 + 0.244266i \(0.921453\pi\)
\(420\) 12.0000i 0.585540i
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 10.0000i 0.486792i
\(423\) −54.0000 −2.62557
\(424\) −11.0000 −0.534207
\(425\) 4.00000 1.00000i 0.194029 0.0485071i
\(426\) −3.00000 −0.145350
\(427\) −4.00000 −0.193574
\(428\) 16.0000i 0.773389i
\(429\) −6.00000 −0.289683
\(430\) 8.00000i 0.385794i
\(431\) 8.00000i 0.385346i −0.981263 0.192673i \(-0.938284\pi\)
0.981263 0.192673i \(-0.0617157\pi\)
\(432\) 9.00000i 0.433013i
\(433\) −8.00000 −0.384455 −0.192228 0.981350i \(-0.561571\pi\)
−0.192228 + 0.981350i \(0.561571\pi\)
\(434\) −28.0000 −1.34404
\(435\) 9.00000i 0.431517i
\(436\) 19.0000i 0.909935i
\(437\) 42.0000i 2.00913i
\(438\) 27.0000 1.29011
\(439\) 32.0000i 1.52728i 0.645644 + 0.763638i \(0.276589\pi\)
−0.645644 + 0.763638i \(0.723411\pi\)
\(440\) −2.00000 −0.0953463
\(441\) 54.0000 2.57143
\(442\) −4.00000 + 1.00000i −0.190261 + 0.0475651i
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) −6.00000 −0.284747
\(445\) 1.00000i 0.0474045i
\(446\) 29.0000 1.37319
\(447\) 18.0000i 0.851371i
\(448\) 4.00000i 0.188982i
\(449\) 30.0000i 1.41579i 0.706319 + 0.707894i \(0.250354\pi\)
−0.706319 + 0.707894i \(0.749646\pi\)
\(450\) 6.00000 0.282843
\(451\) −16.0000 −0.753411
\(452\) 1.00000i 0.0470360i
\(453\) 66.0000i 3.10095i
\(454\) 27.0000i 1.26717i
\(455\) 4.00000 0.187523
\(456\) 21.0000i 0.983415i
\(457\) −36.0000 −1.68401 −0.842004 0.539471i \(-0.818624\pi\)
−0.842004 + 0.539471i \(0.818624\pi\)
\(458\) −4.00000 −0.186908
\(459\) −9.00000 36.0000i −0.420084 1.68034i
\(460\) 6.00000 0.279751
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 24.0000i 1.11658i
\(463\) 9.00000 0.418265 0.209133 0.977887i \(-0.432936\pi\)
0.209133 + 0.977887i \(0.432936\pi\)
\(464\) 3.00000i 0.139272i
\(465\) 21.0000i 0.973852i
\(466\) 3.00000i 0.138972i
\(467\) 26.0000 1.20314 0.601568 0.798821i \(-0.294543\pi\)
0.601568 + 0.798821i \(0.294543\pi\)
\(468\) −6.00000 −0.277350
\(469\) 40.0000i 1.84703i
\(470\) 9.00000i 0.415139i
\(471\) 6.00000i 0.276465i
\(472\) −5.00000 −0.230144
\(473\) 16.0000i 0.735681i
\(474\) 0 0
\(475\) −7.00000 −0.321182
\(476\) −4.00000 16.0000i −0.183340 0.733359i
\(477\) 66.0000 3.02193
\(478\) −20.0000 −0.914779
\(479\) 15.0000i 0.685367i −0.939451 0.342684i \(-0.888664\pi\)
0.939451 0.342684i \(-0.111336\pi\)
\(480\) −3.00000 −0.136931
\(481\) 2.00000i 0.0911922i
\(482\) 4.00000i 0.182195i
\(483\) 72.0000i 3.27611i
\(484\) 7.00000 0.318182
\(485\) −1.00000 −0.0454077
\(486\) 0 0
\(487\) 40.0000i 1.81257i −0.422664 0.906287i \(-0.638905\pi\)
0.422664 0.906287i \(-0.361095\pi\)
\(488\) 1.00000i 0.0452679i
\(489\) 12.0000 0.542659
\(490\) 9.00000i 0.406579i
\(491\) −15.0000 −0.676941 −0.338470 0.940977i \(-0.609909\pi\)
−0.338470 + 0.940977i \(0.609909\pi\)
\(492\) −24.0000 −1.08200
\(493\) 3.00000 + 12.0000i 0.135113 + 0.540453i
\(494\) 7.00000 0.314945
\(495\) 12.0000 0.539360
\(496\) 7.00000i 0.314309i
\(497\) 4.00000 0.179425
\(498\) 18.0000i 0.806599i
\(499\) 20.0000i 0.895323i 0.894203 + 0.447661i \(0.147743\pi\)
−0.894203 + 0.447661i \(0.852257\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) −6.00000 −0.268060
\(502\) −8.00000 −0.357057
\(503\) 12.0000i 0.535054i −0.963550 0.267527i \(-0.913794\pi\)
0.963550 0.267527i \(-0.0862064\pi\)
\(504\) 24.0000i 1.06904i
\(505\) 2.00000i 0.0889988i
\(506\) 12.0000 0.533465
\(507\) 36.0000i 1.59882i
\(508\) −15.0000 −0.665517
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 12.0000 3.00000i 0.531369 0.132842i
\(511\) −36.0000 −1.59255
\(512\) 1.00000 0.0441942
\(513\) 63.0000i 2.78152i
\(514\) 24.0000 1.05859
\(515\) 0 0
\(516\) 24.0000i 1.05654i
\(517\) 18.0000i 0.791639i
\(518\) 8.00000 0.351500
\(519\) 6.00000 0.263371
\(520\) 1.00000i 0.0438529i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 18.0000i 0.787839i
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) 0 0
\(525\) −12.0000 −0.523723
\(526\) −9.00000 −0.392419
\(527\) −7.00000 28.0000i −0.304925 1.21970i
\(528\) −6.00000 −0.261116
\(529\) −13.0000 −0.565217
\(530\) 11.0000i 0.477809i
\(531\) 30.0000 1.30189
\(532\) 28.0000i 1.21395i
\(533\) 8.00000i 0.346518i
\(534\) 3.00000i 0.129823i
\(535\) −16.0000 −0.691740
\(536\) −10.0000 −0.431934
\(537\) 72.0000i 3.10703i
\(538\) 25.0000i 1.07783i
\(539\) 18.0000i 0.775315i
\(540\) 9.00000 0.387298
\(541\) 22.0000i 0.945854i 0.881102 + 0.472927i \(0.156803\pi\)
−0.881102 + 0.472927i \(0.843197\pi\)
\(542\) 12.0000 0.515444
\(543\) −30.0000 −1.28742
\(544\) −4.00000 + 1.00000i −0.171499 + 0.0428746i
\(545\) −19.0000 −0.813871
\(546\) 12.0000 0.513553
\(547\) 39.0000i 1.66752i −0.552127 0.833760i \(-0.686184\pi\)
0.552127 0.833760i \(-0.313816\pi\)
\(548\) 8.00000 0.341743
\(549\) 6.00000i 0.256074i
\(550\) 2.00000i 0.0852803i
\(551\) 21.0000i 0.894630i
\(552\) 18.0000 0.766131
\(553\) 0 0
\(554\) 2.00000i 0.0849719i
\(555\) 6.00000i 0.254686i
\(556\) 14.0000i 0.593732i
\(557\) −27.0000 −1.14403 −0.572013 0.820244i \(-0.693837\pi\)
−0.572013 + 0.820244i \(0.693837\pi\)
\(558\) 42.0000i 1.77800i
\(559\) −8.00000 −0.338364
\(560\) 4.00000 0.169031
\(561\) 24.0000 6.00000i 1.01328 0.253320i
\(562\) 9.00000 0.379642
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) 27.0000i 1.13691i
\(565\) 1.00000 0.0420703
\(566\) 7.00000i 0.294232i
\(567\) 36.0000i 1.51186i
\(568\) 1.00000i 0.0419591i
\(569\) −15.0000 −0.628833 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(570\) −21.0000 −0.879593
\(571\) 16.0000i 0.669579i 0.942293 + 0.334790i \(0.108665\pi\)
−0.942293 + 0.334790i \(0.891335\pi\)
\(572\) 2.00000i 0.0836242i
\(573\) 30.0000i 1.25327i
\(574\) 32.0000 1.33565
\(575\) 6.00000i 0.250217i
\(576\) −6.00000 −0.250000
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 15.0000 8.00000i 0.623918 0.332756i
\(579\) −6.00000 −0.249351
\(580\) −3.00000 −0.124568
\(581\) 24.0000i 0.995688i
\(582\) −3.00000 −0.124354
\(583\) 22.0000i 0.911147i
\(584\) 9.00000i 0.372423i
\(585\) 6.00000i 0.248069i
\(586\) −5.00000 −0.206548
\(587\) −10.0000 −0.412744 −0.206372 0.978474i \(-0.566166\pi\)
−0.206372 + 0.978474i \(0.566166\pi\)
\(588\) 27.0000i 1.11346i
\(589\) 49.0000i 2.01901i
\(590\) 5.00000i 0.205847i
\(591\) 54.0000 2.22126
\(592\) 2.00000i 0.0821995i
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 18.0000 0.738549
\(595\) −16.0000 + 4.00000i −0.655936 + 0.163984i
\(596\) −6.00000 −0.245770
\(597\) −33.0000 −1.35060
\(598\) 6.00000i 0.245358i
\(599\) 2.00000 0.0817178 0.0408589 0.999165i \(-0.486991\pi\)
0.0408589 + 0.999165i \(0.486991\pi\)
\(600\) 3.00000i 0.122474i
\(601\) 16.0000i 0.652654i −0.945257 0.326327i \(-0.894189\pi\)
0.945257 0.326327i \(-0.105811\pi\)
\(602\) 32.0000i 1.30422i
\(603\) 60.0000 2.44339
\(604\) 22.0000 0.895167
\(605\) 7.00000i 0.284590i
\(606\) 6.00000i 0.243733i
\(607\) 12.0000i 0.487065i −0.969893 0.243532i \(-0.921694\pi\)
0.969893 0.243532i \(-0.0783062\pi\)
\(608\) 7.00000 0.283887
\(609\) 36.0000i 1.45879i
\(610\) 1.00000 0.0404888
\(611\) 9.00000 0.364101
\(612\) 24.0000 6.00000i 0.970143 0.242536i
\(613\) 29.0000 1.17130 0.585649 0.810564i \(-0.300840\pi\)
0.585649 + 0.810564i \(0.300840\pi\)
\(614\) 22.0000 0.887848
\(615\) 24.0000i 0.967773i
\(616\) 8.00000 0.322329
\(617\) 1.00000i 0.0402585i −0.999797 0.0201292i \(-0.993592\pi\)
0.999797 0.0201292i \(-0.00640777\pi\)
\(618\) 0 0
\(619\) 22.0000i 0.884255i 0.896952 + 0.442127i \(0.145776\pi\)
−0.896952 + 0.442127i \(0.854224\pi\)
\(620\) 7.00000 0.281127
\(621\) −54.0000 −2.16695
\(622\) 16.0000i 0.641542i
\(623\) 4.00000i 0.160257i
\(624\) 3.00000i 0.120096i
\(625\) 1.00000 0.0400000
\(626\) 26.0000i 1.03917i
\(627\) −42.0000 −1.67732
\(628\) 2.00000 0.0798087
\(629\) 2.00000 + 8.00000i 0.0797452 + 0.318981i
\(630\) −24.0000 −0.956183
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 30.0000 1.19239
\(634\) 20.0000i 0.794301i
\(635\) 15.0000i 0.595257i
\(636\) 33.0000i 1.30854i
\(637\) −9.00000 −0.356593
\(638\) −6.00000 −0.237542
\(639\) 6.00000i 0.237356i
\(640\) 1.00000i 0.0395285i
\(641\) 2.00000i 0.0789953i 0.999220 + 0.0394976i \(0.0125758\pi\)
−0.999220 + 0.0394976i \(0.987424\pi\)
\(642\) −48.0000 −1.89441
\(643\) 12.0000i 0.473234i 0.971603 + 0.236617i \(0.0760386\pi\)
−0.971603 + 0.236617i \(0.923961\pi\)
\(644\) −24.0000 −0.945732
\(645\) 24.0000 0.944999
\(646\) −28.0000 + 7.00000i −1.10165 + 0.275411i
\(647\) 11.0000 0.432455 0.216227 0.976343i \(-0.430625\pi\)
0.216227 + 0.976343i \(0.430625\pi\)
\(648\) 9.00000 0.353553
\(649\) 10.0000i 0.392534i
\(650\) −1.00000 −0.0392232
\(651\) 84.0000i 3.29222i
\(652\) 4.00000i 0.156652i
\(653\) 16.0000i 0.626128i −0.949732 0.313064i \(-0.898644\pi\)
0.949732 0.313064i \(-0.101356\pi\)
\(654\) −57.0000 −2.22888
\(655\) 0 0
\(656\) 8.00000i 0.312348i
\(657\) 54.0000i 2.10674i
\(658\) 36.0000i 1.40343i
\(659\) −29.0000 −1.12968 −0.564840 0.825201i \(-0.691062\pi\)
−0.564840 + 0.825201i \(0.691062\pi\)
\(660\) 6.00000i 0.233550i
\(661\) 12.0000 0.466746 0.233373 0.972387i \(-0.425024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) −19.0000 −0.738456
\(663\) 3.00000 + 12.0000i 0.116510 + 0.466041i
\(664\) 6.00000 0.232845
\(665\) 28.0000 1.08579
\(666\) 12.0000i 0.464991i
\(667\) 18.0000 0.696963
\(668\) 2.00000i 0.0773823i
\(669\) 87.0000i 3.36361i
\(670\) 10.0000i 0.386334i
\(671\) 2.00000 0.0772091
\(672\) 12.0000 0.462910
\(673\) 33.0000i 1.27206i −0.771666 0.636028i \(-0.780576\pi\)
0.771666 0.636028i \(-0.219424\pi\)
\(674\) 23.0000i 0.885927i
\(675\) 9.00000i 0.346410i
\(676\) −12.0000 −0.461538
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 3.00000 0.115214
\(679\) 4.00000 0.153506
\(680\) 1.00000 + 4.00000i 0.0383482 + 0.153393i
\(681\) −81.0000 −3.10393
\(682\) 14.0000 0.536088
\(683\) 35.0000i 1.33924i −0.742705 0.669619i \(-0.766457\pi\)
0.742705 0.669619i \(-0.233543\pi\)
\(684\) −42.0000 −1.60591
\(685\) 8.00000i 0.305664i
\(686\) 8.00000i 0.305441i
\(687\) 12.0000i 0.457829i
\(688\) −8.00000 −0.304997
\(689\) −11.0000 −0.419067
\(690\) 18.0000i 0.685248i
\(691\) 18.0000i 0.684752i 0.939563 + 0.342376i \(0.111232\pi\)
−0.939563 + 0.342376i \(0.888768\pi\)
\(692\) 2.00000i 0.0760286i
\(693\) −48.0000 −1.82337
\(694\) 27.0000i 1.02491i
\(695\) 14.0000 0.531050
\(696\) −9.00000 −0.341144
\(697\) 8.00000 + 32.0000i 0.303022 + 1.21209i
\(698\) 12.0000 0.454207
\(699\) 9.00000 0.340411
\(700\) 4.00000i 0.151186i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 9.00000i 0.339683i
\(703\) 14.0000i 0.528020i
\(704\) 2.00000i 0.0753778i
\(705\) −27.0000 −1.01688
\(706\) −10.0000 −0.376355
\(707\) 8.00000i 0.300871i
\(708\) 15.0000i 0.563735i
\(709\) 17.0000i 0.638448i 0.947679 + 0.319224i \(0.103422\pi\)
−0.947679 + 0.319224i \(0.896578\pi\)
\(710\) −1.00000 −0.0375293
\(711\) 0 0
\(712\) −1.00000 −0.0374766
\(713\) −42.0000 −1.57291
\(714\) −48.0000 + 12.0000i −1.79635 + 0.449089i
\(715\) −2.00000 −0.0747958
\(716\) 24.0000 0.896922
\(717\) 60.0000i 2.24074i
\(718\) −4.00000 −0.149279
\(719\) 15.0000i 0.559406i 0.960087 + 0.279703i \(0.0902359\pi\)
−0.960087 + 0.279703i \(0.909764\pi\)
\(720\) 6.00000i 0.223607i
\(721\) 0 0
\(722\) 30.0000 1.11648
\(723\) 12.0000 0.446285
\(724\) 10.0000i 0.371647i
\(725\) 3.00000i 0.111417i
\(726\) 21.0000i 0.779383i
\(727\) 13.0000 0.482143 0.241072 0.970507i \(-0.422501\pi\)
0.241072 + 0.970507i \(0.422501\pi\)
\(728\) 4.00000i 0.148250i
\(729\) 27.0000 1.00000
\(730\) 9.00000 0.333105
\(731\) 32.0000 8.00000i 1.18356 0.295891i
\(732\) 3.00000 0.110883
\(733\) 6.00000 0.221615 0.110808 0.993842i \(-0.464656\pi\)
0.110808 + 0.993842i \(0.464656\pi\)
\(734\) 10.0000i 0.369107i
\(735\) 27.0000 0.995910
\(736\) 6.00000i 0.221163i
\(737\) 20.0000i 0.736709i
\(738\) 48.0000i 1.76690i
\(739\) −27.0000 −0.993211 −0.496606 0.867976i \(-0.665420\pi\)
−0.496606 + 0.867976i \(0.665420\pi\)
\(740\) −2.00000 −0.0735215
\(741\) 21.0000i 0.771454i
\(742\) 44.0000i 1.61529i
\(743\) 44.0000i 1.61420i 0.590412 + 0.807102i \(0.298965\pi\)
−0.590412 + 0.807102i \(0.701035\pi\)
\(744\) 21.0000 0.769897
\(745\) 6.00000i 0.219823i
\(746\) 10.0000 0.366126
\(747\) −36.0000 −1.31717
\(748\) 2.00000 + 8.00000i 0.0731272 + 0.292509i
\(749\) 64.0000 2.33851
\(750\) 3.00000 0.109545
\(751\) 45.0000i 1.64207i 0.570875 + 0.821037i \(0.306604\pi\)
−0.570875 + 0.821037i \(0.693396\pi\)
\(752\) 9.00000 0.328196
\(753\) 24.0000i 0.874609i
\(754\) 3.00000i 0.109254i
\(755\) 22.0000i 0.800662i
\(756\) −36.0000 −1.30931
\(757\) 43.0000 1.56286 0.781431 0.623992i \(-0.214490\pi\)
0.781431 + 0.623992i \(0.214490\pi\)
\(758\) 8.00000i 0.290573i
\(759\) 36.0000i 1.30672i
\(760\) 7.00000i 0.253917i
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 45.0000i 1.63018i
\(763\) 76.0000 2.75138
\(764\) 10.0000 0.361787
\(765\) −6.00000 24.0000i −0.216930 0.867722i
\(766\) −19.0000 −0.686498
\(767\) −5.00000 −0.180540
\(768\) 3.00000i 0.108253i
\(769\) −23.0000 −0.829401 −0.414701 0.909958i \(-0.636114\pi\)
−0.414701 + 0.909958i \(0.636114\pi\)
\(770\) 8.00000i 0.288300i
\(771\) 72.0000i 2.59302i
\(772\) 2.00000i 0.0719816i
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 48.0000 1.72532
\(775\) 7.00000i 0.251447i
\(776\) 1.00000i 0.0358979i
\(777\) 24.0000i 0.860995i
\(778\) 0 0
\(779\) 56.0000i 2.00641i
\(780\) −3.00000 −0.107417
\(781\) −2.00000 −0.0715656
\(782\) −6.00000 24.0000i −0.214560 0.858238i
\(783\) 27.0000 0.964901
\(784\) −9.00000 −0.321429
\(785\) 2.00000i 0.0713831i
\(786\) 0 0
\(787\) 17.0000i 0.605985i 0.952993 + 0.302992i \(0.0979856\pi\)
−0.952993 + 0.302992i \(0.902014\pi\)
\(788\) 18.0000i 0.641223i
\(789\) 27.0000i 0.961225i
\(790\) 0 0
\(791\) −4.00000 −0.142224
\(792\) 12.0000i 0.426401i
\(793\) 1.00000i 0.0355110i
\(794\) 4.00000i 0.141955i
\(795\) 33.0000 1.17039
\(796\) 11.0000i 0.389885i
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 84.0000 2.97357
\(799\) −36.0000 + 9.00000i −1.27359 + 0.318397i
\(800\) −1.00000 −0.0353553
\(801\) 6.00000 0.212000
\(802\) 24.0000i 0.847469i
\(803\) 18.0000 0.635206
\(804\) 30.0000i 1.05802i
\(805\) 24.0000i 0.845889i
\(806\) 7.00000i 0.246564i
\(807\) −75.0000 −2.64013
\(808\) −2.00000 −0.0703598
\(809\) 16.0000i 0.562530i −0.959630 0.281265i \(-0.909246\pi\)
0.959630 0.281265i \(-0.0907540\pi\)
\(810\) 9.00000i 0.316228i
\(811\) 32.0000i 1.12367i −0.827249 0.561836i \(-0.810095\pi\)
0.827249 0.561836i \(-0.189905\pi\)
\(812\) 12.0000 0.421117
\(813\) 36.0000i 1.26258i
\(814\) −4.00000 −0.140200
\(815\) 4.00000 0.140114
\(816\) 3.00000 + 12.0000i 0.105021 + 0.420084i
\(817\) −56.0000 −1.95919
\(818\) −19.0000 −0.664319
\(819\) 24.0000i 0.838628i
\(820\) −8.00000 −0.279372
\(821\) 21.0000i 0.732905i −0.930437 0.366453i \(-0.880572\pi\)
0.930437 0.366453i \(-0.119428\pi\)
\(822\) 24.0000i 0.837096i
\(823\) 2.00000i 0.0697156i 0.999392 + 0.0348578i \(0.0110978\pi\)
−0.999392 + 0.0348578i \(0.988902\pi\)
\(824\) 0 0
\(825\) 6.00000 0.208893
\(826\) 20.0000i 0.695889i
\(827\) 4.00000i 0.139094i −0.997579 0.0695468i \(-0.977845\pi\)
0.997579 0.0695468i \(-0.0221553\pi\)
\(828\) 36.0000i 1.25109i
\(829\) 24.0000 0.833554 0.416777 0.909009i \(-0.363160\pi\)
0.416777 + 0.909009i \(0.363160\pi\)
\(830\) 6.00000i 0.208263i
\(831\) 6.00000 0.208138
\(832\) 1.00000 0.0346688
\(833\) 36.0000 9.00000i 1.24733 0.311832i
\(834\) 42.0000 1.45434
\(835\) −2.00000 −0.0692129
\(836\) 14.0000i 0.484200i
\(837\) −63.0000 −2.17760
\(838\) 10.0000i 0.345444i
\(839\) 43.0000i 1.48452i 0.670109 + 0.742262i \(0.266247\pi\)
−0.670109 + 0.742262i \(0.733753\pi\)
\(840\) 12.0000i 0.414039i
\(841\) 20.0000 0.689655
\(842\) 6.00000 0.206774
\(843\) 27.0000i 0.929929i
\(844\) 10.0000i 0.344214i
\(845\) 12.0000i 0.412813i
\(846\) −54.0000 −1.85656
\(847\) 28.0000i 0.962091i
\(848\) −11.0000 −0.377742
\(849\) −21.0000 −0.720718
\(850\) 4.00000 1.00000i 0.137199 0.0342997i
\(851\) 12.0000 0.411355
\(852\) −3.00000 −0.102778
\(853\) 4.00000i 0.136957i −0.997653 0.0684787i \(-0.978185\pi\)
0.997653 0.0684787i \(-0.0218145\pi\)
\(854\) −4.00000 −0.136877
\(855\) 42.0000i 1.43637i
\(856\) 16.0000i 0.546869i
\(857\) 23.0000i 0.785665i −0.919610 0.392833i \(-0.871495\pi\)
0.919610 0.392833i \(-0.128505\pi\)
\(858\) −6.00000 −0.204837
\(859\) 15.0000 0.511793 0.255897 0.966704i \(-0.417629\pi\)
0.255897 + 0.966704i \(0.417629\pi\)
\(860\) 8.00000i 0.272798i
\(861\) 96.0000i 3.27167i
\(862\) 8.00000i 0.272481i
\(863\) −20.0000 −0.680808 −0.340404 0.940279i \(-0.610564\pi\)
−0.340404 + 0.940279i \(0.610564\pi\)
\(864\) 9.00000i 0.306186i
\(865\) 2.00000 0.0680020
\(866\) −8.00000 −0.271851
\(867\) −24.0000 45.0000i −0.815083 1.52828i
\(868\) −28.0000 −0.950382
\(869\) 0 0
\(870\) 9.00000i 0.305129i
\(871\) −10.0000 −0.338837
\(872\) 19.0000i 0.643421i
\(873\) 6.00000i 0.203069i
\(874\) 42.0000i 1.42067i
\(875\) −4.00000 −0.135225
\(876\) 27.0000 0.912245
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) 32.0000i 1.07995i
\(879\) 15.0000i 0.505937i
\(880\) −2.00000 −0.0674200
\(881\) 6.00000i 0.202145i 0.994879 + 0.101073i \(0.0322274\pi\)
−0.994879 + 0.101073i \(0.967773\pi\)
\(882\) 54.0000 1.81827
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) −4.00000 + 1.00000i −0.134535 + 0.0336336i
\(885\) 15.0000 0.504219
\(886\) −24.0000 −0.806296
\(887\) 36.0000i 1.20876i 0.796696 + 0.604381i \(0.206579\pi\)
−0.796696 + 0.604381i \(0.793421\pi\)
\(888\) −6.00000 −0.201347
\(889\) 60.0000i 2.01234i
\(890\) 1.00000i 0.0335201i
\(891\) 18.0000i 0.603023i
\(892\) 29.0000 0.970992
\(893\) 63.0000 2.10821
\(894\) 18.0000i 0.602010i
\(895\) 24.0000i 0.802232i
\(896\) 4.00000i 0.133631i
\(897\) 18.0000 0.601003
\(898\) 30.0000i 1.00111i
\(899\) 21.0000 0.700389
\(900\) 6.00000 0.200000
\(901\) 44.0000 11.0000i 1.46585 0.366463i
\(902\) −16.0000 −0.532742
\(903\) −96.0000 −3.19468
\(904\) 1.00000i 0.0332595i
\(905\) −10.0000 −0.332411
\(906\) 66.0000i 2.19270i
\(907\) 45.0000i 1.49420i 0.664711 + 0.747100i \(0.268555\pi\)
−0.664711 + 0.747100i \(0.731445\pi\)
\(908\) 27.0000i 0.896026i
\(909\) 12.0000 0.398015
\(910\) 4.00000 0.132599
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 21.0000i 0.695379i
\(913\) 12.0000i 0.397142i
\(914\) −36.0000 −1.19077
\(915\) 3.00000i 0.0991769i
\(916\) −4.00000 −0.132164
\(917\) 0 0
\(918\) −9.00000 36.0000i −0.297044 1.18818i
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 6.00000 0.197814
\(921\) 66.0000i 2.17477i
\(922\) −6.00000 −0.197599
\(923\) 1.00000i 0.0329154i
\(924\) 24.0000i 0.789542i
\(925\) 2.00000i 0.0657596i
\(926\) 9.00000 0.295758
\(927\) 0 0
\(928\) 3.00000i 0.0984798i
\(929\) 12.0000i 0.393707i 0.980433 + 0.196854i \(0.0630724\pi\)
−0.980433 + 0.196854i \(0.936928\pi\)
\(930\) 21.0000i 0.688617i
\(931\) −63.0000 −2.06474
\(932\) 3.00000i 0.0982683i
\(933\) 48.0000 1.57145
\(934\) 26.0000 0.850746
\(935\) 8.00000 2.00000i 0.261628 0.0654070i
\(936\) −6.00000 −0.196116
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 40.0000i 1.30605i
\(939\) −78.0000 −2.54543
\(940\) 9.00000i 0.293548i
\(941\) 7.00000i 0.228193i 0.993470 + 0.114097i \(0.0363974\pi\)
−0.993470 + 0.114097i \(0.963603\pi\)
\(942\) 6.00000i 0.195491i
\(943\) 48.0000 1.56310
\(944\) −5.00000 −0.162736
\(945\) 36.0000i 1.17108i
\(946\) 16.0000i 0.520205i
\(947\) 41.0000i 1.33232i −0.745808 0.666160i \(-0.767937\pi\)
0.745808 0.666160i \(-0.232063\pi\)
\(948\) 0 0
\(949\) 9.00000i 0.292152i
\(950\) −7.00000 −0.227110
\(951\) 60.0000 1.94563
\(952\) −4.00000 16.0000i −0.129641 0.518563i
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 66.0000 2.13683
\(955\) 10.0000i 0.323592i
\(956\) −20.0000 −0.646846
\(957\) 18.0000i 0.581857i
\(958\) 15.0000i 0.484628i
\(959\) 32.0000i 1.03333i
\(960\) −3.00000 −0.0968246
\(961\) −18.0000 −0.580645
\(962\) 2.00000i 0.0644826i
\(963\) 96.0000i 3.09356i
\(964\) 4.00000i 0.128831i
\(965\) −2.00000 −0.0643823
\(966\) 72.0000i 2.31656i
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 7.00000 0.224989
\(969\) 21.0000 + 84.0000i 0.674617 + 2.69847i
\(970\) −1.00000 −0.0321081
\(971\) −29.0000 −0.930654 −0.465327 0.885139i \(-0.654063\pi\)
−0.465327 + 0.885139i \(0.654063\pi\)
\(972\) 0 0
\(973\) −56.0000 −1.79528
\(974\) 40.0000i 1.28168i
\(975\) 3.00000i 0.0960769i
\(976\) 1.00000i 0.0320092i
\(977\) −10.0000 −0.319928 −0.159964 0.987123i \(-0.551138\pi\)
−0.159964 + 0.987123i \(0.551138\pi\)
\(978\) 12.0000 0.383718
\(979\) 2.00000i 0.0639203i
\(980\) 9.00000i 0.287494i
\(981\) 114.000i 3.63974i
\(982\) −15.0000 −0.478669
\(983\) 4.00000i 0.127580i −0.997963 0.0637901i \(-0.979681\pi\)
0.997963 0.0637901i \(-0.0203188\pi\)
\(984\) −24.0000 −0.765092
\(985\) 18.0000 0.573528
\(986\) 3.00000 + 12.0000i 0.0955395 + 0.382158i
\(987\) 108.000 3.43768
\(988\) 7.00000 0.222700
\(989\) 48.0000i 1.52631i
\(990\) 12.0000 0.381385
\(991\) 23.0000i 0.730619i 0.930886 + 0.365310i \(0.119037\pi\)
−0.930886 + 0.365310i \(0.880963\pi\)
\(992\) 7.00000i 0.222250i
\(993\) 57.0000i 1.80884i
\(994\) 4.00000 0.126872
\(995\) −11.0000 −0.348723
\(996\) 18.0000i 0.570352i
\(997\) 12.0000i 0.380044i −0.981780 0.190022i \(-0.939144\pi\)
0.981780 0.190022i \(-0.0608559\pi\)
\(998\) 20.0000i 0.633089i
\(999\) 18.0000 0.569495
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 170.2.b.b.101.1 2
3.2 odd 2 1530.2.c.b.271.2 2
4.3 odd 2 1360.2.c.a.1121.2 2
5.2 odd 4 850.2.d.a.849.2 2
5.3 odd 4 850.2.d.h.849.1 2
5.4 even 2 850.2.b.a.101.2 2
17.4 even 4 2890.2.a.a.1.1 1
17.13 even 4 2890.2.a.l.1.1 1
17.16 even 2 inner 170.2.b.b.101.2 yes 2
51.50 odd 2 1530.2.c.b.271.1 2
68.67 odd 2 1360.2.c.a.1121.1 2
85.33 odd 4 850.2.d.a.849.1 2
85.67 odd 4 850.2.d.h.849.2 2
85.84 even 2 850.2.b.a.101.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.b.b.101.1 2 1.1 even 1 trivial
170.2.b.b.101.2 yes 2 17.16 even 2 inner
850.2.b.a.101.1 2 85.84 even 2
850.2.b.a.101.2 2 5.4 even 2
850.2.d.a.849.1 2 85.33 odd 4
850.2.d.a.849.2 2 5.2 odd 4
850.2.d.h.849.1 2 5.3 odd 4
850.2.d.h.849.2 2 85.67 odd 4
1360.2.c.a.1121.1 2 68.67 odd 2
1360.2.c.a.1121.2 2 4.3 odd 2
1530.2.c.b.271.1 2 51.50 odd 2
1530.2.c.b.271.2 2 3.2 odd 2
2890.2.a.a.1.1 1 17.4 even 4
2890.2.a.l.1.1 1 17.13 even 4