Properties

Label 850.2.b.a.101.1
Level $850$
Weight $2$
Character 850.101
Analytic conductor $6.787$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(101,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 850.101
Dual form 850.2.b.a.101.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -3.00000i q^{3} +1.00000 q^{4} +3.00000i q^{6} +4.00000i q^{7} -1.00000 q^{8} -6.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -3.00000i q^{3} +1.00000 q^{4} +3.00000i q^{6} +4.00000i q^{7} -1.00000 q^{8} -6.00000 q^{9} +2.00000i q^{11} -3.00000i q^{12} -1.00000 q^{13} -4.00000i q^{14} +1.00000 q^{16} +(4.00000 + 1.00000i) q^{17} +6.00000 q^{18} +7.00000 q^{19} +12.0000 q^{21} -2.00000i q^{22} +6.00000i q^{23} +3.00000i q^{24} +1.00000 q^{26} +9.00000i q^{27} +4.00000i q^{28} +3.00000i q^{29} -7.00000i q^{31} -1.00000 q^{32} +6.00000 q^{33} +(-4.00000 - 1.00000i) q^{34} -6.00000 q^{36} -2.00000i q^{37} -7.00000 q^{38} +3.00000i q^{39} +8.00000i q^{41} -12.0000 q^{42} +8.00000 q^{43} +2.00000i q^{44} -6.00000i q^{46} -9.00000 q^{47} -3.00000i q^{48} -9.00000 q^{49} +(3.00000 - 12.0000i) q^{51} -1.00000 q^{52} +11.0000 q^{53} -9.00000i q^{54} -4.00000i q^{56} -21.0000i q^{57} -3.00000i q^{58} -5.00000 q^{59} -1.00000i q^{61} +7.00000i q^{62} -24.0000i q^{63} +1.00000 q^{64} -6.00000 q^{66} +10.0000 q^{67} +(4.00000 + 1.00000i) q^{68} +18.0000 q^{69} +1.00000i q^{71} +6.00000 q^{72} +9.00000i q^{73} +2.00000i q^{74} +7.00000 q^{76} -8.00000 q^{77} -3.00000i q^{78} +9.00000 q^{81} -8.00000i q^{82} -6.00000 q^{83} +12.0000 q^{84} -8.00000 q^{86} +9.00000 q^{87} -2.00000i q^{88} -1.00000 q^{89} -4.00000i q^{91} +6.00000i q^{92} -21.0000 q^{93} +9.00000 q^{94} +3.00000i q^{96} -1.00000i q^{97} +9.00000 q^{98} -12.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 12 q^{9} - 2 q^{13} + 2 q^{16} + 8 q^{17} + 12 q^{18} + 14 q^{19} + 24 q^{21} + 2 q^{26} - 2 q^{32} + 12 q^{33} - 8 q^{34} - 12 q^{36} - 14 q^{38} - 24 q^{42} + 16 q^{43} - 18 q^{47} - 18 q^{49} + 6 q^{51} - 2 q^{52} + 22 q^{53} - 10 q^{59} + 2 q^{64} - 12 q^{66} + 20 q^{67} + 8 q^{68} + 36 q^{69} + 12 q^{72} + 14 q^{76} - 16 q^{77} + 18 q^{81} - 12 q^{83} + 24 q^{84} - 16 q^{86} + 18 q^{87} - 2 q^{89} - 42 q^{93} + 18 q^{94} + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 3.00000i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 3.00000i 1.22474i
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) −1.00000 −0.353553
\(9\) −6.00000 −2.00000
\(10\) 0 0
\(11\) 2.00000i 0.603023i 0.953463 + 0.301511i \(0.0974911\pi\)
−0.953463 + 0.301511i \(0.902509\pi\)
\(12\) 3.00000i 0.866025i
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 4.00000i 1.06904i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.00000 + 1.00000i 0.970143 + 0.242536i
\(18\) 6.00000 1.41421
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 12.0000 2.61861
\(22\) 2.00000i 0.426401i
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 3.00000i 0.612372i
\(25\) 0 0
\(26\) 1.00000 0.196116
\(27\) 9.00000i 1.73205i
\(28\) 4.00000i 0.755929i
\(29\) 3.00000i 0.557086i 0.960424 + 0.278543i \(0.0898515\pi\)
−0.960424 + 0.278543i \(0.910149\pi\)
\(30\) 0 0
\(31\) 7.00000i 1.25724i −0.777714 0.628619i \(-0.783621\pi\)
0.777714 0.628619i \(-0.216379\pi\)
\(32\) −1.00000 −0.176777
\(33\) 6.00000 1.04447
\(34\) −4.00000 1.00000i −0.685994 0.171499i
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) −7.00000 −1.13555
\(39\) 3.00000i 0.480384i
\(40\) 0 0
\(41\) 8.00000i 1.24939i 0.780869 + 0.624695i \(0.214777\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) −12.0000 −1.85164
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 2.00000i 0.301511i
\(45\) 0 0
\(46\) 6.00000i 0.884652i
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) 3.00000i 0.433013i
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 3.00000 12.0000i 0.420084 1.68034i
\(52\) −1.00000 −0.138675
\(53\) 11.0000 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(54\) 9.00000i 1.22474i
\(55\) 0 0
\(56\) 4.00000i 0.534522i
\(57\) 21.0000i 2.78152i
\(58\) 3.00000i 0.393919i
\(59\) −5.00000 −0.650945 −0.325472 0.945552i \(-0.605523\pi\)
−0.325472 + 0.945552i \(0.605523\pi\)
\(60\) 0 0
\(61\) 1.00000i 0.128037i −0.997949 0.0640184i \(-0.979608\pi\)
0.997949 0.0640184i \(-0.0203916\pi\)
\(62\) 7.00000i 0.889001i
\(63\) 24.0000i 3.02372i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −6.00000 −0.738549
\(67\) 10.0000 1.22169 0.610847 0.791748i \(-0.290829\pi\)
0.610847 + 0.791748i \(0.290829\pi\)
\(68\) 4.00000 + 1.00000i 0.485071 + 0.121268i
\(69\) 18.0000 2.16695
\(70\) 0 0
\(71\) 1.00000i 0.118678i 0.998238 + 0.0593391i \(0.0188993\pi\)
−0.998238 + 0.0593391i \(0.981101\pi\)
\(72\) 6.00000 0.707107
\(73\) 9.00000i 1.05337i 0.850060 + 0.526685i \(0.176565\pi\)
−0.850060 + 0.526685i \(0.823435\pi\)
\(74\) 2.00000i 0.232495i
\(75\) 0 0
\(76\) 7.00000 0.802955
\(77\) −8.00000 −0.911685
\(78\) 3.00000i 0.339683i
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 8.00000i 0.883452i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 12.0000 1.30931
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) 9.00000 0.964901
\(88\) 2.00000i 0.213201i
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) 4.00000i 0.419314i
\(92\) 6.00000i 0.625543i
\(93\) −21.0000 −2.17760
\(94\) 9.00000 0.928279
\(95\) 0 0
\(96\) 3.00000i 0.306186i
\(97\) 1.00000i 0.101535i −0.998711 0.0507673i \(-0.983833\pi\)
0.998711 0.0507673i \(-0.0161667\pi\)
\(98\) 9.00000 0.909137
\(99\) 12.0000i 1.20605i
\(100\) 0 0
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) −3.00000 + 12.0000i −0.297044 + 1.18818i
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −11.0000 −1.06841
\(107\) 16.0000i 1.54678i −0.633932 0.773389i \(-0.718560\pi\)
0.633932 0.773389i \(-0.281440\pi\)
\(108\) 9.00000i 0.866025i
\(109\) 19.0000i 1.81987i 0.414751 + 0.909935i \(0.363869\pi\)
−0.414751 + 0.909935i \(0.636131\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 4.00000i 0.377964i
\(113\) 1.00000i 0.0940721i 0.998893 + 0.0470360i \(0.0149776\pi\)
−0.998893 + 0.0470360i \(0.985022\pi\)
\(114\) 21.0000i 1.96683i
\(115\) 0 0
\(116\) 3.00000i 0.278543i
\(117\) 6.00000 0.554700
\(118\) 5.00000 0.460287
\(119\) −4.00000 + 16.0000i −0.366679 + 1.46672i
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 1.00000i 0.0905357i
\(123\) 24.0000 2.16401
\(124\) 7.00000i 0.628619i
\(125\) 0 0
\(126\) 24.0000i 2.13809i
\(127\) 15.0000 1.33103 0.665517 0.746382i \(-0.268211\pi\)
0.665517 + 0.746382i \(0.268211\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 24.0000i 2.11308i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 6.00000 0.522233
\(133\) 28.0000i 2.42791i
\(134\) −10.0000 −0.863868
\(135\) 0 0
\(136\) −4.00000 1.00000i −0.342997 0.0857493i
\(137\) −8.00000 −0.683486 −0.341743 0.939793i \(-0.611017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) −18.0000 −1.53226
\(139\) 14.0000i 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(140\) 0 0
\(141\) 27.0000i 2.27381i
\(142\) 1.00000i 0.0839181i
\(143\) 2.00000i 0.167248i
\(144\) −6.00000 −0.500000
\(145\) 0 0
\(146\) 9.00000i 0.744845i
\(147\) 27.0000i 2.22692i
\(148\) 2.00000i 0.164399i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 22.0000 1.79033 0.895167 0.445730i \(-0.147056\pi\)
0.895167 + 0.445730i \(0.147056\pi\)
\(152\) −7.00000 −0.567775
\(153\) −24.0000 6.00000i −1.94029 0.485071i
\(154\) 8.00000 0.644658
\(155\) 0 0
\(156\) 3.00000i 0.240192i
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 33.0000i 2.61707i
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) −9.00000 −0.707107
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 8.00000i 0.624695i
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) 2.00000i 0.154765i −0.997001 0.0773823i \(-0.975344\pi\)
0.997001 0.0773823i \(-0.0246562\pi\)
\(168\) −12.0000 −0.925820
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −42.0000 −3.21182
\(172\) 8.00000 0.609994
\(173\) 2.00000i 0.152057i 0.997106 + 0.0760286i \(0.0242240\pi\)
−0.997106 + 0.0760286i \(0.975776\pi\)
\(174\) −9.00000 −0.682288
\(175\) 0 0
\(176\) 2.00000i 0.150756i
\(177\) 15.0000i 1.12747i
\(178\) 1.00000 0.0749532
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 10.0000i 0.743294i 0.928374 + 0.371647i \(0.121207\pi\)
−0.928374 + 0.371647i \(0.878793\pi\)
\(182\) 4.00000i 0.296500i
\(183\) −3.00000 −0.221766
\(184\) 6.00000i 0.442326i
\(185\) 0 0
\(186\) 21.0000 1.53979
\(187\) −2.00000 + 8.00000i −0.146254 + 0.585018i
\(188\) −9.00000 −0.656392
\(189\) −36.0000 −2.61861
\(190\) 0 0
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) 3.00000i 0.216506i
\(193\) 2.00000i 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) 1.00000i 0.0717958i
\(195\) 0 0
\(196\) −9.00000 −0.642857
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 12.0000i 0.852803i
\(199\) 11.0000i 0.779769i 0.920864 + 0.389885i \(0.127485\pi\)
−0.920864 + 0.389885i \(0.872515\pi\)
\(200\) 0 0
\(201\) 30.0000i 2.11604i
\(202\) 2.00000 0.140720
\(203\) −12.0000 −0.842235
\(204\) 3.00000 12.0000i 0.210042 0.840168i
\(205\) 0 0
\(206\) 0 0
\(207\) 36.0000i 2.50217i
\(208\) −1.00000 −0.0693375
\(209\) 14.0000i 0.968400i
\(210\) 0 0
\(211\) 10.0000i 0.688428i −0.938891 0.344214i \(-0.888145\pi\)
0.938891 0.344214i \(-0.111855\pi\)
\(212\) 11.0000 0.755483
\(213\) 3.00000 0.205557
\(214\) 16.0000i 1.09374i
\(215\) 0 0
\(216\) 9.00000i 0.612372i
\(217\) 28.0000 1.90076
\(218\) 19.0000i 1.28684i
\(219\) 27.0000 1.82449
\(220\) 0 0
\(221\) −4.00000 1.00000i −0.269069 0.0672673i
\(222\) 6.00000 0.402694
\(223\) −29.0000 −1.94198 −0.970992 0.239113i \(-0.923143\pi\)
−0.970992 + 0.239113i \(0.923143\pi\)
\(224\) 4.00000i 0.267261i
\(225\) 0 0
\(226\) 1.00000i 0.0665190i
\(227\) 27.0000i 1.79205i −0.444001 0.896026i \(-0.646441\pi\)
0.444001 0.896026i \(-0.353559\pi\)
\(228\) 21.0000i 1.39076i
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) 0 0
\(231\) 24.0000i 1.57908i
\(232\) 3.00000i 0.196960i
\(233\) 3.00000i 0.196537i 0.995160 + 0.0982683i \(0.0313303\pi\)
−0.995160 + 0.0982683i \(0.968670\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) −5.00000 −0.325472
\(237\) 0 0
\(238\) 4.00000 16.0000i 0.259281 1.03713i
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 4.00000i 0.257663i −0.991667 0.128831i \(-0.958877\pi\)
0.991667 0.128831i \(-0.0411226\pi\)
\(242\) −7.00000 −0.449977
\(243\) 0 0
\(244\) 1.00000i 0.0640184i
\(245\) 0 0
\(246\) −24.0000 −1.53018
\(247\) −7.00000 −0.445399
\(248\) 7.00000i 0.444500i
\(249\) 18.0000i 1.14070i
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 24.0000i 1.51186i
\(253\) −12.0000 −0.754434
\(254\) −15.0000 −0.941184
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −24.0000 −1.49708 −0.748539 0.663090i \(-0.769245\pi\)
−0.748539 + 0.663090i \(0.769245\pi\)
\(258\) 24.0000i 1.49417i
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 18.0000i 1.11417i
\(262\) 0 0
\(263\) 9.00000 0.554964 0.277482 0.960731i \(-0.410500\pi\)
0.277482 + 0.960731i \(0.410500\pi\)
\(264\) −6.00000 −0.369274
\(265\) 0 0
\(266\) 28.0000i 1.71679i
\(267\) 3.00000i 0.183597i
\(268\) 10.0000 0.610847
\(269\) 25.0000i 1.52428i 0.647414 + 0.762138i \(0.275850\pi\)
−0.647414 + 0.762138i \(0.724150\pi\)
\(270\) 0 0
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) 4.00000 + 1.00000i 0.242536 + 0.0606339i
\(273\) −12.0000 −0.726273
\(274\) 8.00000 0.483298
\(275\) 0 0
\(276\) 18.0000 1.08347
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 14.0000i 0.839664i
\(279\) 42.0000i 2.51447i
\(280\) 0 0
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) 27.0000i 1.60783i
\(283\) 7.00000i 0.416107i −0.978117 0.208053i \(-0.933287\pi\)
0.978117 0.208053i \(-0.0667128\pi\)
\(284\) 1.00000i 0.0593391i
\(285\) 0 0
\(286\) 2.00000i 0.118262i
\(287\) −32.0000 −1.88890
\(288\) 6.00000 0.353553
\(289\) 15.0000 + 8.00000i 0.882353 + 0.470588i
\(290\) 0 0
\(291\) −3.00000 −0.175863
\(292\) 9.00000i 0.526685i
\(293\) 5.00000 0.292103 0.146052 0.989277i \(-0.453343\pi\)
0.146052 + 0.989277i \(0.453343\pi\)
\(294\) 27.0000i 1.57467i
\(295\) 0 0
\(296\) 2.00000i 0.116248i
\(297\) −18.0000 −1.04447
\(298\) 6.00000 0.347571
\(299\) 6.00000i 0.346989i
\(300\) 0 0
\(301\) 32.0000i 1.84445i
\(302\) −22.0000 −1.26596
\(303\) 6.00000i 0.344691i
\(304\) 7.00000 0.401478
\(305\) 0 0
\(306\) 24.0000 + 6.00000i 1.37199 + 0.342997i
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) −8.00000 −0.455842
\(309\) 0 0
\(310\) 0 0
\(311\) 16.0000i 0.907277i −0.891186 0.453638i \(-0.850126\pi\)
0.891186 0.453638i \(-0.149874\pi\)
\(312\) 3.00000i 0.169842i
\(313\) 26.0000i 1.46961i −0.678280 0.734803i \(-0.737274\pi\)
0.678280 0.734803i \(-0.262726\pi\)
\(314\) 2.00000 0.112867
\(315\) 0 0
\(316\) 0 0
\(317\) 20.0000i 1.12331i 0.827371 + 0.561656i \(0.189836\pi\)
−0.827371 + 0.561656i \(0.810164\pi\)
\(318\) 33.0000i 1.85055i
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) −48.0000 −2.67910
\(322\) 24.0000 1.33747
\(323\) 28.0000 + 7.00000i 1.55796 + 0.389490i
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) 4.00000i 0.221540i
\(327\) 57.0000 3.15211
\(328\) 8.00000i 0.441726i
\(329\) 36.0000i 1.98474i
\(330\) 0 0
\(331\) −19.0000 −1.04433 −0.522167 0.852843i \(-0.674876\pi\)
−0.522167 + 0.852843i \(0.674876\pi\)
\(332\) −6.00000 −0.329293
\(333\) 12.0000i 0.657596i
\(334\) 2.00000i 0.109435i
\(335\) 0 0
\(336\) 12.0000 0.654654
\(337\) 23.0000i 1.25289i −0.779466 0.626445i \(-0.784509\pi\)
0.779466 0.626445i \(-0.215491\pi\)
\(338\) 12.0000 0.652714
\(339\) 3.00000 0.162938
\(340\) 0 0
\(341\) 14.0000 0.758143
\(342\) 42.0000 2.27110
\(343\) 8.00000i 0.431959i
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) 2.00000i 0.107521i
\(347\) 27.0000i 1.44944i 0.689046 + 0.724718i \(0.258030\pi\)
−0.689046 + 0.724718i \(0.741970\pi\)
\(348\) 9.00000 0.482451
\(349\) 12.0000 0.642345 0.321173 0.947021i \(-0.395923\pi\)
0.321173 + 0.947021i \(0.395923\pi\)
\(350\) 0 0
\(351\) 9.00000i 0.480384i
\(352\) 2.00000i 0.106600i
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) 15.0000i 0.797241i
\(355\) 0 0
\(356\) −1.00000 −0.0529999
\(357\) 48.0000 + 12.0000i 2.54043 + 0.635107i
\(358\) −24.0000 −1.26844
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 10.0000i 0.525588i
\(363\) 21.0000i 1.10221i
\(364\) 4.00000i 0.209657i
\(365\) 0 0
\(366\) 3.00000 0.156813
\(367\) 10.0000i 0.521996i 0.965339 + 0.260998i \(0.0840516\pi\)
−0.965339 + 0.260998i \(0.915948\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 48.0000i 2.49878i
\(370\) 0 0
\(371\) 44.0000i 2.28437i
\(372\) −21.0000 −1.08880
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 2.00000 8.00000i 0.103418 0.413670i
\(375\) 0 0
\(376\) 9.00000 0.464140
\(377\) 3.00000i 0.154508i
\(378\) 36.0000 1.85164
\(379\) 8.00000i 0.410932i 0.978664 + 0.205466i \(0.0658711\pi\)
−0.978664 + 0.205466i \(0.934129\pi\)
\(380\) 0 0
\(381\) 45.0000i 2.30542i
\(382\) −10.0000 −0.511645
\(383\) 19.0000 0.970855 0.485427 0.874277i \(-0.338664\pi\)
0.485427 + 0.874277i \(0.338664\pi\)
\(384\) 3.00000i 0.153093i
\(385\) 0 0
\(386\) 2.00000i 0.101797i
\(387\) −48.0000 −2.43998
\(388\) 1.00000i 0.0507673i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) −6.00000 + 24.0000i −0.303433 + 1.21373i
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) 18.0000i 0.906827i
\(395\) 0 0
\(396\) 12.0000i 0.603023i
\(397\) 4.00000i 0.200754i 0.994949 + 0.100377i \(0.0320049\pi\)
−0.994949 + 0.100377i \(0.967995\pi\)
\(398\) 11.0000i 0.551380i
\(399\) 84.0000 4.20526
\(400\) 0 0
\(401\) 24.0000i 1.19850i −0.800561 0.599251i \(-0.795465\pi\)
0.800561 0.599251i \(-0.204535\pi\)
\(402\) 30.0000i 1.49626i
\(403\) 7.00000i 0.348695i
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 4.00000 0.198273
\(408\) −3.00000 + 12.0000i −0.148522 + 0.594089i
\(409\) −19.0000 −0.939490 −0.469745 0.882802i \(-0.655654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(410\) 0 0
\(411\) 24.0000i 1.18383i
\(412\) 0 0
\(413\) 20.0000i 0.984136i
\(414\) 36.0000i 1.76930i
\(415\) 0 0
\(416\) 1.00000 0.0490290
\(417\) −42.0000 −2.05675
\(418\) 14.0000i 0.684762i
\(419\) 10.0000i 0.488532i −0.969708 0.244266i \(-0.921453\pi\)
0.969708 0.244266i \(-0.0785470\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 10.0000i 0.486792i
\(423\) 54.0000 2.62557
\(424\) −11.0000 −0.534207
\(425\) 0 0
\(426\) −3.00000 −0.145350
\(427\) 4.00000 0.193574
\(428\) 16.0000i 0.773389i
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) 8.00000i 0.385346i 0.981263 + 0.192673i \(0.0617157\pi\)
−0.981263 + 0.192673i \(0.938284\pi\)
\(432\) 9.00000i 0.433013i
\(433\) 8.00000 0.384455 0.192228 0.981350i \(-0.438429\pi\)
0.192228 + 0.981350i \(0.438429\pi\)
\(434\) −28.0000 −1.34404
\(435\) 0 0
\(436\) 19.0000i 0.909935i
\(437\) 42.0000i 2.00913i
\(438\) −27.0000 −1.29011
\(439\) 32.0000i 1.52728i −0.645644 0.763638i \(-0.723411\pi\)
0.645644 0.763638i \(-0.276589\pi\)
\(440\) 0 0
\(441\) 54.0000 2.57143
\(442\) 4.00000 + 1.00000i 0.190261 + 0.0475651i
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) −6.00000 −0.284747
\(445\) 0 0
\(446\) 29.0000 1.37319
\(447\) 18.0000i 0.851371i
\(448\) 4.00000i 0.188982i
\(449\) 30.0000i 1.41579i −0.706319 0.707894i \(-0.749646\pi\)
0.706319 0.707894i \(-0.250354\pi\)
\(450\) 0 0
\(451\) −16.0000 −0.753411
\(452\) 1.00000i 0.0470360i
\(453\) 66.0000i 3.10095i
\(454\) 27.0000i 1.26717i
\(455\) 0 0
\(456\) 21.0000i 0.983415i
\(457\) 36.0000 1.68401 0.842004 0.539471i \(-0.181376\pi\)
0.842004 + 0.539471i \(0.181376\pi\)
\(458\) 4.00000 0.186908
\(459\) −9.00000 + 36.0000i −0.420084 + 1.68034i
\(460\) 0 0
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 24.0000i 1.11658i
\(463\) −9.00000 −0.418265 −0.209133 0.977887i \(-0.567064\pi\)
−0.209133 + 0.977887i \(0.567064\pi\)
\(464\) 3.00000i 0.139272i
\(465\) 0 0
\(466\) 3.00000i 0.138972i
\(467\) −26.0000 −1.20314 −0.601568 0.798821i \(-0.705457\pi\)
−0.601568 + 0.798821i \(0.705457\pi\)
\(468\) 6.00000 0.277350
\(469\) 40.0000i 1.84703i
\(470\) 0 0
\(471\) 6.00000i 0.276465i
\(472\) 5.00000 0.230144
\(473\) 16.0000i 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) −4.00000 + 16.0000i −0.183340 + 0.733359i
\(477\) −66.0000 −3.02193
\(478\) 20.0000 0.914779
\(479\) 15.0000i 0.685367i 0.939451 + 0.342684i \(0.111336\pi\)
−0.939451 + 0.342684i \(0.888664\pi\)
\(480\) 0 0
\(481\) 2.00000i 0.0911922i
\(482\) 4.00000i 0.182195i
\(483\) 72.0000i 3.27611i
\(484\) 7.00000 0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) 40.0000i 1.81257i −0.422664 0.906287i \(-0.638905\pi\)
0.422664 0.906287i \(-0.361095\pi\)
\(488\) 1.00000i 0.0452679i
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) −15.0000 −0.676941 −0.338470 0.940977i \(-0.609909\pi\)
−0.338470 + 0.940977i \(0.609909\pi\)
\(492\) 24.0000 1.08200
\(493\) −3.00000 + 12.0000i −0.135113 + 0.540453i
\(494\) 7.00000 0.314945
\(495\) 0 0
\(496\) 7.00000i 0.314309i
\(497\) −4.00000 −0.179425
\(498\) 18.0000i 0.806599i
\(499\) 20.0000i 0.895323i −0.894203 0.447661i \(-0.852257\pi\)
0.894203 0.447661i \(-0.147743\pi\)
\(500\) 0 0
\(501\) −6.00000 −0.268060
\(502\) 8.00000 0.357057
\(503\) 12.0000i 0.535054i −0.963550 0.267527i \(-0.913794\pi\)
0.963550 0.267527i \(-0.0862064\pi\)
\(504\) 24.0000i 1.06904i
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 36.0000i 1.59882i
\(508\) 15.0000 0.665517
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 0 0
\(511\) −36.0000 −1.59255
\(512\) −1.00000 −0.0441942
\(513\) 63.0000i 2.78152i
\(514\) 24.0000 1.05859
\(515\) 0 0
\(516\) 24.0000i 1.05654i
\(517\) 18.0000i 0.791639i
\(518\) −8.00000 −0.351500
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 18.0000i 0.787839i
\(523\) 22.0000 0.961993 0.480996 0.876723i \(-0.340275\pi\)
0.480996 + 0.876723i \(0.340275\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −9.00000 −0.392419
\(527\) 7.00000 28.0000i 0.304925 1.21970i
\(528\) 6.00000 0.261116
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 30.0000 1.30189
\(532\) 28.0000i 1.21395i
\(533\) 8.00000i 0.346518i
\(534\) 3.00000i 0.129823i
\(535\) 0 0
\(536\) −10.0000 −0.431934
\(537\) 72.0000i 3.10703i
\(538\) 25.0000i 1.07783i
\(539\) 18.0000i 0.775315i
\(540\) 0 0
\(541\) 22.0000i 0.945854i −0.881102 0.472927i \(-0.843197\pi\)
0.881102 0.472927i \(-0.156803\pi\)
\(542\) −12.0000 −0.515444
\(543\) 30.0000 1.28742
\(544\) −4.00000 1.00000i −0.171499 0.0428746i
\(545\) 0 0
\(546\) 12.0000 0.513553
\(547\) 39.0000i 1.66752i −0.552127 0.833760i \(-0.686184\pi\)
0.552127 0.833760i \(-0.313816\pi\)
\(548\) −8.00000 −0.341743
\(549\) 6.00000i 0.256074i
\(550\) 0 0
\(551\) 21.0000i 0.894630i
\(552\) −18.0000 −0.766131
\(553\) 0 0
\(554\) 2.00000i 0.0849719i
\(555\) 0 0
\(556\) 14.0000i 0.593732i
\(557\) 27.0000 1.14403 0.572013 0.820244i \(-0.306163\pi\)
0.572013 + 0.820244i \(0.306163\pi\)
\(558\) 42.0000i 1.77800i
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 24.0000 + 6.00000i 1.01328 + 0.253320i
\(562\) −9.00000 −0.379642
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 27.0000i 1.13691i
\(565\) 0 0
\(566\) 7.00000i 0.294232i
\(567\) 36.0000i 1.51186i
\(568\) 1.00000i 0.0419591i
\(569\) −15.0000 −0.628833 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(570\) 0 0
\(571\) 16.0000i 0.669579i −0.942293 0.334790i \(-0.891335\pi\)
0.942293 0.334790i \(-0.108665\pi\)
\(572\) 2.00000i 0.0836242i
\(573\) 30.0000i 1.25327i
\(574\) 32.0000 1.33565
\(575\) 0 0
\(576\) −6.00000 −0.250000
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) −15.0000 8.00000i −0.623918 0.332756i
\(579\) −6.00000 −0.249351
\(580\) 0 0
\(581\) 24.0000i 0.995688i
\(582\) 3.00000 0.124354
\(583\) 22.0000i 0.911147i
\(584\) 9.00000i 0.372423i
\(585\) 0 0
\(586\) −5.00000 −0.206548
\(587\) 10.0000 0.412744 0.206372 0.978474i \(-0.433834\pi\)
0.206372 + 0.978474i \(0.433834\pi\)
\(588\) 27.0000i 1.11346i
\(589\) 49.0000i 2.01901i
\(590\) 0 0
\(591\) 54.0000 2.22126
\(592\) 2.00000i 0.0821995i
\(593\) −22.0000 −0.903432 −0.451716 0.892162i \(-0.649188\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(594\) 18.0000 0.738549
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 33.0000 1.35060
\(598\) 6.00000i 0.245358i
\(599\) 2.00000 0.0817178 0.0408589 0.999165i \(-0.486991\pi\)
0.0408589 + 0.999165i \(0.486991\pi\)
\(600\) 0 0
\(601\) 16.0000i 0.652654i 0.945257 + 0.326327i \(0.105811\pi\)
−0.945257 + 0.326327i \(0.894189\pi\)
\(602\) 32.0000i 1.30422i
\(603\) −60.0000 −2.44339
\(604\) 22.0000 0.895167
\(605\) 0 0
\(606\) 6.00000i 0.243733i
\(607\) 12.0000i 0.487065i −0.969893 0.243532i \(-0.921694\pi\)
0.969893 0.243532i \(-0.0783062\pi\)
\(608\) −7.00000 −0.283887
\(609\) 36.0000i 1.45879i
\(610\) 0 0
\(611\) 9.00000 0.364101
\(612\) −24.0000 6.00000i −0.970143 0.242536i
\(613\) −29.0000 −1.17130 −0.585649 0.810564i \(-0.699160\pi\)
−0.585649 + 0.810564i \(0.699160\pi\)
\(614\) 22.0000 0.887848
\(615\) 0 0
\(616\) 8.00000 0.322329
\(617\) 1.00000i 0.0402585i −0.999797 0.0201292i \(-0.993592\pi\)
0.999797 0.0201292i \(-0.00640777\pi\)
\(618\) 0 0
\(619\) 22.0000i 0.884255i −0.896952 0.442127i \(-0.854224\pi\)
0.896952 0.442127i \(-0.145776\pi\)
\(620\) 0 0
\(621\) −54.0000 −2.16695
\(622\) 16.0000i 0.641542i
\(623\) 4.00000i 0.160257i
\(624\) 3.00000i 0.120096i
\(625\) 0 0
\(626\) 26.0000i 1.03917i
\(627\) 42.0000 1.67732
\(628\) −2.00000 −0.0798087
\(629\) 2.00000 8.00000i 0.0797452 0.318981i
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) −30.0000 −1.19239
\(634\) 20.0000i 0.794301i
\(635\) 0 0
\(636\) 33.0000i 1.30854i
\(637\) 9.00000 0.356593
\(638\) 6.00000 0.237542
\(639\) 6.00000i 0.237356i
\(640\) 0 0
\(641\) 2.00000i 0.0789953i −0.999220 0.0394976i \(-0.987424\pi\)
0.999220 0.0394976i \(-0.0125758\pi\)
\(642\) 48.0000 1.89441
\(643\) 12.0000i 0.473234i 0.971603 + 0.236617i \(0.0760386\pi\)
−0.971603 + 0.236617i \(0.923961\pi\)
\(644\) −24.0000 −0.945732
\(645\) 0 0
\(646\) −28.0000 7.00000i −1.10165 0.275411i
\(647\) −11.0000 −0.432455 −0.216227 0.976343i \(-0.569375\pi\)
−0.216227 + 0.976343i \(0.569375\pi\)
\(648\) −9.00000 −0.353553
\(649\) 10.0000i 0.392534i
\(650\) 0 0
\(651\) 84.0000i 3.29222i
\(652\) 4.00000i 0.156652i
\(653\) 16.0000i 0.626128i −0.949732 0.313064i \(-0.898644\pi\)
0.949732 0.313064i \(-0.101356\pi\)
\(654\) −57.0000 −2.22888
\(655\) 0 0
\(656\) 8.00000i 0.312348i
\(657\) 54.0000i 2.10674i
\(658\) 36.0000i 1.40343i
\(659\) −29.0000 −1.12968 −0.564840 0.825201i \(-0.691062\pi\)
−0.564840 + 0.825201i \(0.691062\pi\)
\(660\) 0 0
\(661\) 12.0000 0.466746 0.233373 0.972387i \(-0.425024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) 19.0000 0.738456
\(663\) −3.00000 + 12.0000i −0.116510 + 0.466041i
\(664\) 6.00000 0.232845
\(665\) 0 0
\(666\) 12.0000i 0.464991i
\(667\) −18.0000 −0.696963
\(668\) 2.00000i 0.0773823i
\(669\) 87.0000i 3.36361i
\(670\) 0 0
\(671\) 2.00000 0.0772091
\(672\) −12.0000 −0.462910
\(673\) 33.0000i 1.27206i −0.771666 0.636028i \(-0.780576\pi\)
0.771666 0.636028i \(-0.219424\pi\)
\(674\) 23.0000i 0.885927i
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) −3.00000 −0.115214
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) −81.0000 −3.10393
\(682\) −14.0000 −0.536088
\(683\) 35.0000i 1.33924i −0.742705 0.669619i \(-0.766457\pi\)
0.742705 0.669619i \(-0.233543\pi\)
\(684\) −42.0000 −1.60591
\(685\) 0 0
\(686\) 8.00000i 0.305441i
\(687\) 12.0000i 0.457829i
\(688\) 8.00000 0.304997
\(689\) −11.0000 −0.419067
\(690\) 0 0
\(691\) 18.0000i 0.684752i −0.939563 0.342376i \(-0.888768\pi\)
0.939563 0.342376i \(-0.111232\pi\)
\(692\) 2.00000i 0.0760286i
\(693\) 48.0000 1.82337
\(694\) 27.0000i 1.02491i
\(695\) 0 0
\(696\) −9.00000 −0.341144
\(697\) −8.00000 + 32.0000i −0.303022 + 1.21209i
\(698\) −12.0000 −0.454207
\(699\) 9.00000 0.340411
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 9.00000i 0.339683i
\(703\) 14.0000i 0.528020i
\(704\) 2.00000i 0.0753778i
\(705\) 0 0
\(706\) −10.0000 −0.376355
\(707\) 8.00000i 0.300871i
\(708\) 15.0000i 0.563735i
\(709\) 17.0000i 0.638448i −0.947679 0.319224i \(-0.896578\pi\)
0.947679 0.319224i \(-0.103422\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.00000 0.0374766
\(713\) 42.0000 1.57291
\(714\) −48.0000 12.0000i −1.79635 0.449089i
\(715\) 0 0
\(716\) 24.0000 0.896922
\(717\) 60.0000i 2.24074i
\(718\) 4.00000 0.149279
\(719\) 15.0000i 0.559406i −0.960087 0.279703i \(-0.909764\pi\)
0.960087 0.279703i \(-0.0902359\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −30.0000 −1.11648
\(723\) −12.0000 −0.446285
\(724\) 10.0000i 0.371647i
\(725\) 0 0
\(726\) 21.0000i 0.779383i
\(727\) −13.0000 −0.482143 −0.241072 0.970507i \(-0.577499\pi\)
−0.241072 + 0.970507i \(0.577499\pi\)
\(728\) 4.00000i 0.148250i
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 32.0000 + 8.00000i 1.18356 + 0.295891i
\(732\) −3.00000 −0.110883
\(733\) −6.00000 −0.221615 −0.110808 0.993842i \(-0.535344\pi\)
−0.110808 + 0.993842i \(0.535344\pi\)
\(734\) 10.0000i 0.369107i
\(735\) 0 0
\(736\) 6.00000i 0.221163i
\(737\) 20.0000i 0.736709i
\(738\) 48.0000i 1.76690i
\(739\) −27.0000 −0.993211 −0.496606 0.867976i \(-0.665420\pi\)
−0.496606 + 0.867976i \(0.665420\pi\)
\(740\) 0 0
\(741\) 21.0000i 0.771454i
\(742\) 44.0000i 1.61529i
\(743\) 44.0000i 1.61420i 0.590412 + 0.807102i \(0.298965\pi\)
−0.590412 + 0.807102i \(0.701035\pi\)
\(744\) 21.0000 0.769897
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) 36.0000 1.31717
\(748\) −2.00000 + 8.00000i −0.0731272 + 0.292509i
\(749\) 64.0000 2.33851
\(750\) 0 0
\(751\) 45.0000i 1.64207i −0.570875 0.821037i \(-0.693396\pi\)
0.570875 0.821037i \(-0.306604\pi\)
\(752\) −9.00000 −0.328196
\(753\) 24.0000i 0.874609i
\(754\) 3.00000i 0.109254i
\(755\) 0 0
\(756\) −36.0000 −1.30931
\(757\) −43.0000 −1.56286 −0.781431 0.623992i \(-0.785510\pi\)
−0.781431 + 0.623992i \(0.785510\pi\)
\(758\) 8.00000i 0.290573i
\(759\) 36.0000i 1.30672i
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 45.0000i 1.63018i
\(763\) −76.0000 −2.75138
\(764\) 10.0000 0.361787
\(765\) 0 0
\(766\) −19.0000 −0.686498
\(767\) 5.00000 0.180540
\(768\) 3.00000i 0.108253i
\(769\) −23.0000 −0.829401 −0.414701 0.909958i \(-0.636114\pi\)
−0.414701 + 0.909958i \(0.636114\pi\)
\(770\) 0 0
\(771\) 72.0000i 2.59302i
\(772\) 2.00000i 0.0719816i
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 48.0000 1.72532
\(775\) 0 0
\(776\) 1.00000i 0.0358979i
\(777\) 24.0000i 0.860995i
\(778\) 0 0
\(779\) 56.0000i 2.00641i
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) 6.00000 24.0000i 0.214560 0.858238i
\(783\) −27.0000 −0.964901
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) 17.0000i 0.605985i 0.952993 + 0.302992i \(0.0979856\pi\)
−0.952993 + 0.302992i \(0.902014\pi\)
\(788\) 18.0000i 0.641223i
\(789\) 27.0000i 0.961225i
\(790\) 0 0
\(791\) −4.00000 −0.142224
\(792\) 12.0000i 0.426401i
\(793\) 1.00000i 0.0355110i
\(794\) 4.00000i 0.141955i
\(795\) 0 0
\(796\) 11.0000i 0.389885i
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) −84.0000 −2.97357
\(799\) −36.0000 9.00000i −1.27359 0.318397i
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 24.0000i 0.847469i
\(803\) −18.0000 −0.635206
\(804\) 30.0000i 1.05802i
\(805\) 0 0
\(806\) 7.00000i 0.246564i
\(807\) 75.0000 2.64013
\(808\) 2.00000 0.0703598
\(809\) 16.0000i 0.562530i 0.959630 + 0.281265i \(0.0907540\pi\)
−0.959630 + 0.281265i \(0.909246\pi\)
\(810\) 0 0
\(811\) 32.0000i 1.12367i 0.827249 + 0.561836i \(0.189905\pi\)
−0.827249 + 0.561836i \(0.810095\pi\)
\(812\) −12.0000 −0.421117
\(813\) 36.0000i 1.26258i
\(814\) −4.00000 −0.140200
\(815\) 0 0
\(816\) 3.00000 12.0000i 0.105021 0.420084i
\(817\) 56.0000 1.95919
\(818\) 19.0000 0.664319
\(819\) 24.0000i 0.838628i
\(820\) 0 0
\(821\) 21.0000i 0.732905i 0.930437 + 0.366453i \(0.119428\pi\)
−0.930437 + 0.366453i \(0.880572\pi\)
\(822\) 24.0000i 0.837096i
\(823\) 2.00000i 0.0697156i 0.999392 + 0.0348578i \(0.0110978\pi\)
−0.999392 + 0.0348578i \(0.988902\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 20.0000i 0.695889i
\(827\) 4.00000i 0.139094i −0.997579 0.0695468i \(-0.977845\pi\)
0.997579 0.0695468i \(-0.0221553\pi\)
\(828\) 36.0000i 1.25109i
\(829\) 24.0000 0.833554 0.416777 0.909009i \(-0.363160\pi\)
0.416777 + 0.909009i \(0.363160\pi\)
\(830\) 0 0
\(831\) 6.00000 0.208138
\(832\) −1.00000 −0.0346688
\(833\) −36.0000 9.00000i −1.24733 0.311832i
\(834\) 42.0000 1.45434
\(835\) 0 0
\(836\) 14.0000i 0.484200i
\(837\) 63.0000 2.17760
\(838\) 10.0000i 0.345444i
\(839\) 43.0000i 1.48452i −0.670109 0.742262i \(-0.733753\pi\)
0.670109 0.742262i \(-0.266247\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) −6.00000 −0.206774
\(843\) 27.0000i 0.929929i
\(844\) 10.0000i 0.344214i
\(845\) 0 0
\(846\) −54.0000 −1.85656
\(847\) 28.0000i 0.962091i
\(848\) 11.0000 0.377742
\(849\) −21.0000 −0.720718
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 3.00000 0.102778
\(853\) 4.00000i 0.136957i −0.997653 0.0684787i \(-0.978185\pi\)
0.997653 0.0684787i \(-0.0218145\pi\)
\(854\) −4.00000 −0.136877
\(855\) 0 0
\(856\) 16.0000i 0.546869i
\(857\) 23.0000i 0.785665i −0.919610 0.392833i \(-0.871495\pi\)
0.919610 0.392833i \(-0.128505\pi\)
\(858\) 6.00000 0.204837
\(859\) 15.0000 0.511793 0.255897 0.966704i \(-0.417629\pi\)
0.255897 + 0.966704i \(0.417629\pi\)
\(860\) 0 0
\(861\) 96.0000i 3.27167i
\(862\) 8.00000i 0.272481i
\(863\) 20.0000 0.680808 0.340404 0.940279i \(-0.389436\pi\)
0.340404 + 0.940279i \(0.389436\pi\)
\(864\) 9.00000i 0.306186i
\(865\) 0 0
\(866\) −8.00000 −0.271851
\(867\) 24.0000 45.0000i 0.815083 1.52828i
\(868\) 28.0000 0.950382
\(869\) 0 0
\(870\) 0 0
\(871\) −10.0000 −0.338837
\(872\) 19.0000i 0.643421i
\(873\) 6.00000i 0.203069i
\(874\) 42.0000i 1.42067i
\(875\) 0 0
\(876\) 27.0000 0.912245
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) 32.0000i 1.07995i
\(879\) 15.0000i 0.505937i
\(880\) 0 0
\(881\) 6.00000i 0.202145i −0.994879 0.101073i \(-0.967773\pi\)
0.994879 0.101073i \(-0.0322274\pi\)
\(882\) −54.0000 −1.81827
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) −4.00000 1.00000i −0.134535 0.0336336i
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) 36.0000i 1.20876i 0.796696 + 0.604381i \(0.206579\pi\)
−0.796696 + 0.604381i \(0.793421\pi\)
\(888\) 6.00000 0.201347
\(889\) 60.0000i 2.01234i
\(890\) 0 0
\(891\) 18.0000i 0.603023i
\(892\) −29.0000 −0.970992
\(893\) −63.0000 −2.10821
\(894\) 18.0000i 0.602010i
\(895\) 0 0
\(896\) 4.00000i 0.133631i
\(897\) −18.0000 −0.601003
\(898\) 30.0000i 1.00111i
\(899\) 21.0000 0.700389
\(900\) 0 0
\(901\) 44.0000 + 11.0000i 1.46585 + 0.366463i
\(902\) 16.0000 0.532742
\(903\) 96.0000 3.19468
\(904\) 1.00000i 0.0332595i
\(905\) 0 0
\(906\) 66.0000i 2.19270i
\(907\) 45.0000i 1.49420i 0.664711 + 0.747100i \(0.268555\pi\)
−0.664711 + 0.747100i \(0.731445\pi\)
\(908\) 27.0000i 0.896026i
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 21.0000i 0.695379i
\(913\) 12.0000i 0.397142i
\(914\) −36.0000 −1.19077
\(915\) 0 0
\(916\) −4.00000 −0.132164
\(917\) 0 0
\(918\) 9.00000 36.0000i 0.297044 1.18818i
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 66.0000i 2.17477i
\(922\) 6.00000 0.197599
\(923\) 1.00000i 0.0329154i
\(924\) 24.0000i 0.789542i
\(925\) 0 0
\(926\) 9.00000 0.295758
\(927\) 0 0
\(928\) 3.00000i 0.0984798i
\(929\) 12.0000i 0.393707i −0.980433 0.196854i \(-0.936928\pi\)
0.980433 0.196854i \(-0.0630724\pi\)
\(930\) 0 0
\(931\) −63.0000 −2.06474
\(932\) 3.00000i 0.0982683i
\(933\) −48.0000 −1.57145
\(934\) 26.0000 0.850746
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 40.0000i 1.30605i
\(939\) −78.0000 −2.54543
\(940\) 0 0
\(941\) 7.00000i 0.228193i −0.993470 0.114097i \(-0.963603\pi\)
0.993470 0.114097i \(-0.0363974\pi\)
\(942\) 6.00000i 0.195491i
\(943\) −48.0000 −1.56310
\(944\) −5.00000 −0.162736
\(945\) 0 0
\(946\) 16.0000i 0.520205i
\(947\) 41.0000i 1.33232i −0.745808 0.666160i \(-0.767937\pi\)
0.745808 0.666160i \(-0.232063\pi\)
\(948\) 0 0
\(949\) 9.00000i 0.292152i
\(950\) 0 0
\(951\) 60.0000 1.94563
\(952\) 4.00000 16.0000i 0.129641 0.518563i
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 66.0000 2.13683
\(955\) 0 0
\(956\) −20.0000 −0.646846
\(957\) 18.0000i 0.581857i
\(958\) 15.0000i 0.484628i
\(959\) 32.0000i 1.03333i
\(960\) 0 0
\(961\) −18.0000 −0.580645
\(962\) 2.00000i 0.0644826i
\(963\) 96.0000i 3.09356i
\(964\) 4.00000i 0.128831i
\(965\) 0 0
\(966\) 72.0000i 2.31656i
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) −7.00000 −0.224989
\(969\) 21.0000 84.0000i 0.674617 2.69847i
\(970\) 0 0
\(971\) −29.0000 −0.930654 −0.465327 0.885139i \(-0.654063\pi\)
−0.465327 + 0.885139i \(0.654063\pi\)
\(972\) 0 0
\(973\) 56.0000 1.79528
\(974\) 40.0000i 1.28168i
\(975\) 0 0
\(976\) 1.00000i 0.0320092i
\(977\) 10.0000 0.319928 0.159964 0.987123i \(-0.448862\pi\)
0.159964 + 0.987123i \(0.448862\pi\)
\(978\) −12.0000 −0.383718
\(979\) 2.00000i 0.0639203i
\(980\) 0 0
\(981\) 114.000i 3.63974i
\(982\) 15.0000 0.478669
\(983\) 4.00000i 0.127580i −0.997963 0.0637901i \(-0.979681\pi\)
0.997963 0.0637901i \(-0.0203188\pi\)
\(984\) −24.0000 −0.765092
\(985\) 0 0
\(986\) 3.00000 12.0000i 0.0955395 0.382158i
\(987\) −108.000 −3.43768
\(988\) −7.00000 −0.222700
\(989\) 48.0000i 1.52631i
\(990\) 0 0
\(991\) 23.0000i 0.730619i −0.930886 0.365310i \(-0.880963\pi\)
0.930886 0.365310i \(-0.119037\pi\)
\(992\) 7.00000i 0.222250i
\(993\) 57.0000i 1.80884i
\(994\) 4.00000 0.126872
\(995\) 0 0
\(996\) 18.0000i 0.570352i
\(997\) 12.0000i 0.380044i −0.981780 0.190022i \(-0.939144\pi\)
0.981780 0.190022i \(-0.0608559\pi\)
\(998\) 20.0000i 0.633089i
\(999\) 18.0000 0.569495
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.b.a.101.1 2
5.2 odd 4 850.2.d.a.849.1 2
5.3 odd 4 850.2.d.h.849.2 2
5.4 even 2 170.2.b.b.101.2 yes 2
15.14 odd 2 1530.2.c.b.271.1 2
17.16 even 2 inner 850.2.b.a.101.2 2
20.19 odd 2 1360.2.c.a.1121.1 2
85.4 even 4 2890.2.a.l.1.1 1
85.33 odd 4 850.2.d.a.849.2 2
85.64 even 4 2890.2.a.a.1.1 1
85.67 odd 4 850.2.d.h.849.1 2
85.84 even 2 170.2.b.b.101.1 2
255.254 odd 2 1530.2.c.b.271.2 2
340.339 odd 2 1360.2.c.a.1121.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.b.b.101.1 2 85.84 even 2
170.2.b.b.101.2 yes 2 5.4 even 2
850.2.b.a.101.1 2 1.1 even 1 trivial
850.2.b.a.101.2 2 17.16 even 2 inner
850.2.d.a.849.1 2 5.2 odd 4
850.2.d.a.849.2 2 85.33 odd 4
850.2.d.h.849.1 2 85.67 odd 4
850.2.d.h.849.2 2 5.3 odd 4
1360.2.c.a.1121.1 2 20.19 odd 2
1360.2.c.a.1121.2 2 340.339 odd 2
1530.2.c.b.271.1 2 15.14 odd 2
1530.2.c.b.271.2 2 255.254 odd 2
2890.2.a.a.1.1 1 85.64 even 4
2890.2.a.l.1.1 1 85.4 even 4