Properties

Label 170.2.b
Level 170170
Weight 22
Character orbit 170.b
Rep. character χ170(101,)\chi_{170}(101,\cdot)
Character field Q\Q
Dimension 66
Newform subspaces 33
Sturm bound 5454
Trace bound 99

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 170=2517 170 = 2 \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 170.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 17 17
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 5454
Trace bound: 99
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(170,[χ])M_{2}(170, [\chi]).

Total New Old
Modular forms 30 6 24
Cusp forms 22 6 16
Eisenstein series 8 0 8

Trace form

6q+2q2+6q4+2q82q912q138q15+6q162q1710q18+4q19+24q216q25+8q264q30+2q3224q3318q34+4q35+26q98+O(q100) 6 q + 2 q^{2} + 6 q^{4} + 2 q^{8} - 2 q^{9} - 12 q^{13} - 8 q^{15} + 6 q^{16} - 2 q^{17} - 10 q^{18} + 4 q^{19} + 24 q^{21} - 6 q^{25} + 8 q^{26} - 4 q^{30} + 2 q^{32} - 24 q^{33} - 18 q^{34} + 4 q^{35}+ \cdots - 26 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(170,[χ])S_{2}^{\mathrm{new}}(170, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
170.2.b.a 170.b 17.b 22 1.3571.357 Q(1)\Q(\sqrt{-1}) None 170.2.b.a 2-2 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qq2+iq3+q4+iq5iq6+q-q^{2}+i q^{3}+q^{4}+i q^{5}-i q^{6}+\cdots
170.2.b.b 170.b 17.b 22 1.3571.357 Q(1)\Q(\sqrt{-1}) None 170.2.b.b 22 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+q2+3iq3+q4+iq5+3iq6+q+q^{2}+3 i q^{3}+q^{4}+i q^{5}+3 i q^{6}+\cdots
170.2.b.c 170.b 17.b 22 1.3571.357 Q(1)\Q(\sqrt{-1}) None 170.2.b.c 22 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+q2+q4+iq5+2iq7+q8+q+q^{2}+q^{4}+i q^{5}+2 i q^{7}+q^{8}+\cdots

Decomposition of S2old(170,[χ])S_{2}^{\mathrm{old}}(170, [\chi]) into lower level spaces

S2old(170,[χ]) S_{2}^{\mathrm{old}}(170, [\chi]) \simeq S2new(34,[χ])S_{2}^{\mathrm{new}}(34, [\chi])2^{\oplus 2}\oplusS2new(85,[χ])S_{2}^{\mathrm{new}}(85, [\chi])2^{\oplus 2}