Defining parameters
Level: | \( N \) | \(=\) | \( 170 = 2 \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 170.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(170, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 30 | 6 | 24 |
Cusp forms | 22 | 6 | 16 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(170, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
170.2.b.a | $2$ | $1.357$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}+i q^{3}+q^{4}+i q^{5}-i q^{6}+\cdots\) |
170.2.b.b | $2$ | $1.357$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}+3 i q^{3}+q^{4}+i q^{5}+3 i q^{6}+\cdots\) |
170.2.b.c | $2$ | $1.357$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}+q^{4}+i q^{5}+2 i q^{7}+q^{8}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(170, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(170, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)