Properties

Label 4-170e2-1.1-c1e2-0-14
Degree $4$
Conductor $28900$
Sign $1$
Analytic cond. $1.84268$
Root an. cond. $1.16509$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s + 6·9-s − 4·13-s + 5·16-s − 2·17-s + 12·18-s − 16·19-s − 25-s − 8·26-s + 6·32-s − 4·34-s + 18·36-s − 32·38-s − 16·43-s + 10·49-s − 2·50-s − 12·52-s + 20·53-s + 8·59-s + 7·64-s − 8·67-s − 6·68-s + 24·72-s − 48·76-s + 27·81-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.41·8-s + 2·9-s − 1.10·13-s + 5/4·16-s − 0.485·17-s + 2.82·18-s − 3.67·19-s − 1/5·25-s − 1.56·26-s + 1.06·32-s − 0.685·34-s + 3·36-s − 5.19·38-s − 2.43·43-s + 10/7·49-s − 0.282·50-s − 1.66·52-s + 2.74·53-s + 1.04·59-s + 7/8·64-s − 0.977·67-s − 0.727·68-s + 2.82·72-s − 5.50·76-s + 3·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28900\)    =    \(2^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1.84268\)
Root analytic conductor: \(1.16509\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 28900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.878557579\)
\(L(\frac12)\) \(\approx\) \(2.878557579\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
5$C_2$ \( 1 + T^{2} \)
17$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94407642036537484328674743374, −12.71991391950053845994315374925, −12.19336794839424565471569783485, −11.85433668855291833341100897616, −11.05543305765230238128605601836, −10.55622503560228451325784433348, −10.11639100699523557853309705068, −9.945609295567579133963362296170, −8.719628844099429559617781278284, −8.538087315103129226148980569814, −7.37919842515154954497070386172, −7.26835572617531933661978272572, −6.45168467505020539170819963411, −6.34769481191182450507979128760, −5.21583820190124830450662575045, −4.66481553244488061897850650772, −4.16309584125763120004185199517, −3.81144439505337770209116126257, −2.35577095351504871124232407459, −1.96873713218844423806568882524, 1.96873713218844423806568882524, 2.35577095351504871124232407459, 3.81144439505337770209116126257, 4.16309584125763120004185199517, 4.66481553244488061897850650772, 5.21583820190124830450662575045, 6.34769481191182450507979128760, 6.45168467505020539170819963411, 7.26835572617531933661978272572, 7.37919842515154954497070386172, 8.538087315103129226148980569814, 8.719628844099429559617781278284, 9.945609295567579133963362296170, 10.11639100699523557853309705068, 10.55622503560228451325784433348, 11.05543305765230238128605601836, 11.85433668855291833341100897616, 12.19336794839424565471569783485, 12.71991391950053845994315374925, 12.94407642036537484328674743374

Graph of the $Z$-function along the critical line