Properties

Label 170.2.b.c
Level $170$
Weight $2$
Character orbit 170.b
Analytic conductor $1.357$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [170,2,Mod(101,170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(170, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("170.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 170.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.35745683436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + i q^{5} + 2 i q^{7} + q^{8} + 3 q^{9} + i q^{10} - 4 i q^{11} - 2 q^{13} + 2 i q^{14} + q^{16} + ( - 4 i - 1) q^{17} + 3 q^{18} - 8 q^{19} + i q^{20} - 4 i q^{22} + 6 i q^{23} - q^{25} + \cdots - 12 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} + 6 q^{9} - 4 q^{13} + 2 q^{16} - 2 q^{17} + 6 q^{18} - 16 q^{19} - 2 q^{25} - 4 q^{26} + 2 q^{32} - 2 q^{34} - 4 q^{35} + 6 q^{36} - 16 q^{38} - 16 q^{43} + 6 q^{49} - 2 q^{50}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/170\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(137\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
1.00000i
1.00000i
1.00000 0 1.00000 1.00000i 0 2.00000i 1.00000 3.00000 1.00000i
101.2 1.00000 0 1.00000 1.00000i 0 2.00000i 1.00000 3.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 170.2.b.c 2
3.b odd 2 1 1530.2.c.a 2
4.b odd 2 1 1360.2.c.d 2
5.b even 2 1 850.2.b.e 2
5.c odd 4 1 850.2.d.d 2
5.c odd 4 1 850.2.d.e 2
17.b even 2 1 inner 170.2.b.c 2
17.c even 4 1 2890.2.a.f 1
17.c even 4 1 2890.2.a.g 1
51.c odd 2 1 1530.2.c.a 2
68.d odd 2 1 1360.2.c.d 2
85.c even 2 1 850.2.b.e 2
85.g odd 4 1 850.2.d.d 2
85.g odd 4 1 850.2.d.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.b.c 2 1.a even 1 1 trivial
170.2.b.c 2 17.b even 2 1 inner
850.2.b.e 2 5.b even 2 1
850.2.b.e 2 85.c even 2 1
850.2.d.d 2 5.c odd 4 1
850.2.d.d 2 85.g odd 4 1
850.2.d.e 2 5.c odd 4 1
850.2.d.e 2 85.g odd 4 1
1360.2.c.d 2 4.b odd 2 1
1360.2.c.d 2 68.d odd 2 1
1530.2.c.a 2 3.b odd 2 1
1530.2.c.a 2 51.c odd 2 1
2890.2.a.f 1 17.c even 4 1
2890.2.a.g 1 17.c even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(170, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 16 \) Copy content Toggle raw display
$13$ \( (T + 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 2T + 17 \) Copy content Toggle raw display
$19$ \( (T + 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( T^{2} + 100 \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( T^{2} + 16 \) Copy content Toggle raw display
$43$ \( (T + 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T - 10)^{2} \) Copy content Toggle raw display
$59$ \( (T - 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 100 \) Copy content Toggle raw display
$67$ \( (T + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 100 \) Copy content Toggle raw display
$73$ \( T^{2} + 144 \) Copy content Toggle raw display
$79$ \( T^{2} + 36 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 256 \) Copy content Toggle raw display
show more
show less