L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.453 + 0.891i)5-s + (0.453 − 0.891i)8-s + (0.987 − 0.156i)9-s + (−0.809 − 0.587i)10-s + (1.44 + 1.04i)13-s + (0.809 + 0.587i)16-s + (−0.951 − 0.309i)17-s + i·18-s + (0.707 − 0.707i)20-s + (−0.587 − 0.809i)25-s + (−1.26 + 1.26i)26-s + (1.70 − 0.133i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.453 + 0.891i)5-s + (0.453 − 0.891i)8-s + (0.987 − 0.156i)9-s + (−0.809 − 0.587i)10-s + (1.44 + 1.04i)13-s + (0.809 + 0.587i)16-s + (−0.951 − 0.309i)17-s + i·18-s + (0.707 − 0.707i)20-s + (−0.587 − 0.809i)25-s + (−1.26 + 1.26i)26-s + (1.70 − 0.133i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.523 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.523 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9420840750\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9420840750\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.156 - 0.987i)T \) |
| 5 | \( 1 + (0.453 - 0.891i)T \) |
| 17 | \( 1 + (0.951 + 0.309i)T \) |
good | 3 | \( 1 + (-0.987 + 0.156i)T^{2} \) |
| 7 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.891 + 0.453i)T^{2} \) |
| 13 | \( 1 + (-1.44 - 1.04i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 23 | \( 1 + (0.891 - 0.453i)T^{2} \) |
| 29 | \( 1 + (-1.70 + 0.133i)T + (0.987 - 0.156i)T^{2} \) |
| 31 | \( 1 + (0.156 - 0.987i)T^{2} \) |
| 37 | \( 1 + (0.453 - 1.89i)T + (-0.891 - 0.453i)T^{2} \) |
| 41 | \( 1 + (1.70 - 1.04i)T + (0.453 - 0.891i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.412 + 0.809i)T + (-0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 61 | \( 1 + (0.0366 + 0.152i)T + (-0.891 + 0.453i)T^{2} \) |
| 67 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (0.987 - 0.156i)T^{2} \) |
| 73 | \( 1 + (0.678 - 1.10i)T + (-0.453 - 0.891i)T^{2} \) |
| 79 | \( 1 + (0.156 + 0.987i)T^{2} \) |
| 83 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 89 | \( 1 + (1.16 + 1.59i)T + (-0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.0366 - 0.465i)T + (-0.987 + 0.156i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.807880620417980475783348980795, −8.698765769568213336406919366593, −8.280986124891590766203834812606, −7.17179391331245557716079548066, −6.62175549601872841130729456143, −6.25993234492816318353395212319, −4.74654193972578529090032799404, −4.19392139375904041299922561684, −3.20939115047520329056420011733, −1.47864970698250414900136419985,
0.900272728950032762836475207389, 1.95305115320687031326304457509, 3.40471752079174629140720323449, 4.09869553057789175515415369519, 4.87166795361862373308576041027, 5.78528452879629299737992229050, 7.05847276561196231759895668392, 8.047016390043585800842260299309, 8.623587518775309783563091014761, 9.156511917381591949617321648406