Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1700,1,Mod(19,1700)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(40))
chi = DirichletCharacter(H, H._module([20, 36, 35]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1700.19");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1700.cf (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
0.891007 | + | 0.453990i | 0 | 0.587785 | + | 0.809017i | −0.156434 | − | 0.987688i | 0 | 0 | 0.156434 | + | 0.987688i | 0.453990 | + | 0.891007i | 0.309017 | − | 0.951057i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
59.1 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | 0.453990 | + | 0.891007i | 0 | 0 | −0.453990 | − | 0.891007i | −0.987688 | − | 0.156434i | −0.809017 | + | 0.587785i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
179.1 | 0.891007 | − | 0.453990i | 0 | 0.587785 | − | 0.809017i | −0.156434 | + | 0.987688i | 0 | 0 | 0.156434 | − | 0.987688i | 0.453990 | − | 0.891007i | 0.309017 | + | 0.951057i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
219.1 | −0.891007 | − | 0.453990i | 0 | 0.587785 | + | 0.809017i | 0.156434 | + | 0.987688i | 0 | 0 | −0.156434 | − | 0.987688i | −0.453990 | − | 0.891007i | 0.309017 | − | 0.951057i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
359.1 | −0.987688 | + | 0.156434i | 0 | 0.951057 | − | 0.309017i | 0.891007 | − | 0.453990i | 0 | 0 | −0.891007 | + | 0.453990i | 0.156434 | − | 0.987688i | −0.809017 | + | 0.587785i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
519.1 | −0.453990 | + | 0.891007i | 0 | −0.587785 | − | 0.809017i | −0.987688 | + | 0.156434i | 0 | 0 | 0.987688 | − | 0.156434i | −0.891007 | + | 0.453990i | 0.309017 | − | 0.951057i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
559.1 | 0.987688 | − | 0.156434i | 0 | 0.951057 | − | 0.309017i | −0.891007 | + | 0.453990i | 0 | 0 | 0.891007 | − | 0.453990i | −0.156434 | + | 0.987688i | −0.809017 | + | 0.587785i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
739.1 | 0.987688 | + | 0.156434i | 0 | 0.951057 | + | 0.309017i | −0.891007 | − | 0.453990i | 0 | 0 | 0.891007 | + | 0.453990i | −0.156434 | − | 0.987688i | −0.809017 | − | 0.587785i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
859.1 | −0.156434 | − | 0.987688i | 0 | −0.951057 | + | 0.309017i | −0.453990 | − | 0.891007i | 0 | 0 | 0.453990 | + | 0.891007i | 0.987688 | + | 0.156434i | −0.809017 | + | 0.587785i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1039.1 | −0.156434 | + | 0.987688i | 0 | −0.951057 | − | 0.309017i | −0.453990 | + | 0.891007i | 0 | 0 | 0.453990 | − | 0.891007i | 0.987688 | − | 0.156434i | −0.809017 | − | 0.587785i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1079.1 | −0.891007 | + | 0.453990i | 0 | 0.587785 | − | 0.809017i | 0.156434 | − | 0.987688i | 0 | 0 | −0.156434 | + | 0.987688i | −0.453990 | + | 0.891007i | 0.309017 | + | 0.951057i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1239.1 | 0.156434 | − | 0.987688i | 0 | −0.951057 | − | 0.309017i | 0.453990 | − | 0.891007i | 0 | 0 | −0.453990 | + | 0.891007i | −0.987688 | + | 0.156434i | −0.809017 | − | 0.587785i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1379.1 | −0.453990 | − | 0.891007i | 0 | −0.587785 | + | 0.809017i | −0.987688 | − | 0.156434i | 0 | 0 | 0.987688 | + | 0.156434i | −0.891007 | − | 0.453990i | 0.309017 | + | 0.951057i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1419.1 | 0.453990 | − | 0.891007i | 0 | −0.587785 | − | 0.809017i | 0.987688 | − | 0.156434i | 0 | 0 | −0.987688 | + | 0.156434i | 0.891007 | − | 0.453990i | 0.309017 | − | 0.951057i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1539.1 | −0.987688 | − | 0.156434i | 0 | 0.951057 | + | 0.309017i | 0.891007 | + | 0.453990i | 0 | 0 | −0.891007 | − | 0.453990i | 0.156434 | + | 0.987688i | −0.809017 | − | 0.587785i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1579.1 | 0.453990 | + | 0.891007i | 0 | −0.587785 | + | 0.809017i | 0.987688 | + | 0.156434i | 0 | 0 | −0.987688 | − | 0.156434i | 0.891007 | + | 0.453990i | 0.309017 | + | 0.951057i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by |
425.bd | even | 40 | 1 | inner |
1700.cf | odd | 40 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1700.1.cf.a | ✓ | 16 |
4.b | odd | 2 | 1 | CM | 1700.1.cf.a | ✓ | 16 |
17.d | even | 8 | 1 | 1700.1.cf.b | yes | 16 | |
25.e | even | 10 | 1 | 1700.1.cf.b | yes | 16 | |
68.g | odd | 8 | 1 | 1700.1.cf.b | yes | 16 | |
100.h | odd | 10 | 1 | 1700.1.cf.b | yes | 16 | |
425.bd | even | 40 | 1 | inner | 1700.1.cf.a | ✓ | 16 |
1700.cf | odd | 40 | 1 | inner | 1700.1.cf.a | ✓ | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1700.1.cf.a | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
1700.1.cf.a | ✓ | 16 | 4.b | odd | 2 | 1 | CM |
1700.1.cf.a | ✓ | 16 | 425.bd | even | 40 | 1 | inner |
1700.1.cf.a | ✓ | 16 | 1700.cf | odd | 40 | 1 | inner |
1700.1.cf.b | yes | 16 | 17.d | even | 8 | 1 | |
1700.1.cf.b | yes | 16 | 25.e | even | 10 | 1 | |
1700.1.cf.b | yes | 16 | 68.g | odd | 8 | 1 | |
1700.1.cf.b | yes | 16 | 100.h | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .