Properties

Label 1700.1.cf.a
Level 17001700
Weight 11
Character orbit 1700.cf
Analytic conductor 0.8480.848
Analytic rank 00
Dimension 1616
Projective image D40D_{40}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1700,1,Mod(19,1700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(40))
 
chi = DirichletCharacter(H, H._module([20, 36, 35]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1700.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1700=225217 1700 = 2^{2} \cdot 5^{2} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1700.cf (of order 4040, degree 1616, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8484105214760.848410521476
Analytic rank: 00
Dimension: 1616
Coefficient field: Q(ζ40)\Q(\zeta_{40})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x12+x8x4+1 x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D40D_{40}
Projective field: Galois closure of Q[x]/(x40+)\mathbb{Q}[x]/(x^{40} + \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ4017q2ζ4014q4ζ4011q5+ζ4011q8+ζ4013q9+ζ408q10+(ζ409ζ407)q13ζ408q16+ζ4012q98+O(q100) q + \zeta_{40}^{17} q^{2} - \zeta_{40}^{14} q^{4} - \zeta_{40}^{11} q^{5} + \zeta_{40}^{11} q^{8} + \zeta_{40}^{13} q^{9} + \zeta_{40}^{8} q^{10} + ( - \zeta_{40}^{9} - \zeta_{40}^{7}) q^{13} - \zeta_{40}^{8} q^{16} + \cdots - \zeta_{40}^{12} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q4q10+4q16+4q26+4q294q41+4q4516q5316q65+4q684q724q734q74+4q824q98+O(q100) 16 q - 4 q^{10} + 4 q^{16} + 4 q^{26} + 4 q^{29} - 4 q^{41} + 4 q^{45} - 16 q^{53} - 16 q^{65} + 4 q^{68} - 4 q^{72} - 4 q^{73} - 4 q^{74} + 4 q^{82} - 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1700Z)×\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times.

nn 477477 851851 16011601
χ(n)\chi(n) ζ404\zeta_{40}^{4} 1-1 ζ405-\zeta_{40}^{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
−0.987688 + 0.156434i
−0.891007 + 0.453990i
−0.987688 0.156434i
0.987688 0.156434i
−0.453990 0.891007i
−0.156434 0.987688i
0.453990 + 0.891007i
0.453990 0.891007i
0.891007 0.453990i
0.891007 + 0.453990i
0.987688 + 0.156434i
−0.891007 0.453990i
−0.156434 + 0.987688i
0.156434 + 0.987688i
−0.453990 + 0.891007i
0.156434 0.987688i
0.891007 + 0.453990i 0 0.587785 + 0.809017i −0.156434 0.987688i 0 0 0.156434 + 0.987688i 0.453990 + 0.891007i 0.309017 0.951057i
59.1 0.156434 + 0.987688i 0 −0.951057 + 0.309017i 0.453990 + 0.891007i 0 0 −0.453990 0.891007i −0.987688 0.156434i −0.809017 + 0.587785i
179.1 0.891007 0.453990i 0 0.587785 0.809017i −0.156434 + 0.987688i 0 0 0.156434 0.987688i 0.453990 0.891007i 0.309017 + 0.951057i
219.1 −0.891007 0.453990i 0 0.587785 + 0.809017i 0.156434 + 0.987688i 0 0 −0.156434 0.987688i −0.453990 0.891007i 0.309017 0.951057i
359.1 −0.987688 + 0.156434i 0 0.951057 0.309017i 0.891007 0.453990i 0 0 −0.891007 + 0.453990i 0.156434 0.987688i −0.809017 + 0.587785i
519.1 −0.453990 + 0.891007i 0 −0.587785 0.809017i −0.987688 + 0.156434i 0 0 0.987688 0.156434i −0.891007 + 0.453990i 0.309017 0.951057i
559.1 0.987688 0.156434i 0 0.951057 0.309017i −0.891007 + 0.453990i 0 0 0.891007 0.453990i −0.156434 + 0.987688i −0.809017 + 0.587785i
739.1 0.987688 + 0.156434i 0 0.951057 + 0.309017i −0.891007 0.453990i 0 0 0.891007 + 0.453990i −0.156434 0.987688i −0.809017 0.587785i
859.1 −0.156434 0.987688i 0 −0.951057 + 0.309017i −0.453990 0.891007i 0 0 0.453990 + 0.891007i 0.987688 + 0.156434i −0.809017 + 0.587785i
1039.1 −0.156434 + 0.987688i 0 −0.951057 0.309017i −0.453990 + 0.891007i 0 0 0.453990 0.891007i 0.987688 0.156434i −0.809017 0.587785i
1079.1 −0.891007 + 0.453990i 0 0.587785 0.809017i 0.156434 0.987688i 0 0 −0.156434 + 0.987688i −0.453990 + 0.891007i 0.309017 + 0.951057i
1239.1 0.156434 0.987688i 0 −0.951057 0.309017i 0.453990 0.891007i 0 0 −0.453990 + 0.891007i −0.987688 + 0.156434i −0.809017 0.587785i
1379.1 −0.453990 0.891007i 0 −0.587785 + 0.809017i −0.987688 0.156434i 0 0 0.987688 + 0.156434i −0.891007 0.453990i 0.309017 + 0.951057i
1419.1 0.453990 0.891007i 0 −0.587785 0.809017i 0.987688 0.156434i 0 0 −0.987688 + 0.156434i 0.891007 0.453990i 0.309017 0.951057i
1539.1 −0.987688 0.156434i 0 0.951057 + 0.309017i 0.891007 + 0.453990i 0 0 −0.891007 0.453990i 0.156434 + 0.987688i −0.809017 0.587785i
1579.1 0.453990 + 0.891007i 0 −0.587785 + 0.809017i 0.987688 + 0.156434i 0 0 −0.987688 0.156434i 0.891007 + 0.453990i 0.309017 + 0.951057i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
425.bd even 40 1 inner
1700.cf odd 40 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1700.1.cf.a 16
4.b odd 2 1 CM 1700.1.cf.a 16
17.d even 8 1 1700.1.cf.b yes 16
25.e even 10 1 1700.1.cf.b yes 16
68.g odd 8 1 1700.1.cf.b yes 16
100.h odd 10 1 1700.1.cf.b yes 16
425.bd even 40 1 inner 1700.1.cf.a 16
1700.cf odd 40 1 inner 1700.1.cf.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1700.1.cf.a 16 1.a even 1 1 trivial
1700.1.cf.a 16 4.b odd 2 1 CM
1700.1.cf.a 16 425.bd even 40 1 inner
1700.1.cf.a 16 1700.cf odd 40 1 inner
1700.1.cf.b yes 16 17.d even 8 1
1700.1.cf.b yes 16 25.e even 10 1
1700.1.cf.b yes 16 68.g odd 8 1
1700.1.cf.b yes 16 100.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T29164T2915+10T291420T2913+34T291244T2911++1 T_{29}^{16} - 4 T_{29}^{15} + 10 T_{29}^{14} - 20 T_{29}^{13} + 34 T_{29}^{12} - 44 T_{29}^{11} + \cdots + 1 acting on S1new(1700,[χ])S_{1}^{\mathrm{new}}(1700, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16T12++1 T^{16} - T^{12} + \cdots + 1 Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16T12++1 T^{16} - T^{12} + \cdots + 1 Copy content Toggle raw display
77 T16 T^{16} Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 T16+4T14++1 T^{16} + 4 T^{14} + \cdots + 1 Copy content Toggle raw display
1717 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
1919 T16 T^{16} Copy content Toggle raw display
2323 T16 T^{16} Copy content Toggle raw display
2929 T164T15++1 T^{16} - 4 T^{15} + \cdots + 1 Copy content Toggle raw display
3131 T16 T^{16} Copy content Toggle raw display
3737 T16+8T14++1 T^{16} + 8 T^{14} + \cdots + 1 Copy content Toggle raw display
4141 T16+4T15++1 T^{16} + 4 T^{15} + \cdots + 1 Copy content Toggle raw display
4343 T16 T^{16} Copy content Toggle raw display
4747 T16 T^{16} Copy content Toggle raw display
5353 (T8+8T7+27T6++1)2 (T^{8} + 8 T^{7} + 27 T^{6} + \cdots + 1)^{2} Copy content Toggle raw display
5959 T16 T^{16} Copy content Toggle raw display
6161 T162T14++1 T^{16} - 2 T^{14} + \cdots + 1 Copy content Toggle raw display
6767 T16 T^{16} Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 T16+4T15++1 T^{16} + 4 T^{15} + \cdots + 1 Copy content Toggle raw display
7979 T16 T^{16} Copy content Toggle raw display
8383 T16 T^{16} Copy content Toggle raw display
8989 T164T14++1 T^{16} - 4 T^{14} + \cdots + 1 Copy content Toggle raw display
9797 T162T14++1 T^{16} - 2 T^{14} + \cdots + 1 Copy content Toggle raw display
show more
show less