gp: [N,k,chi] = [1700,1,Mod(19,1700)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(40))
chi = DirichletCharacter(H, H._module([20, 36, 35]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1700.19");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,0,0,0,0,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 1700 Z ) × \left(\mathbb{Z}/1700\mathbb{Z}\right)^\times ( Z / 1 7 0 0 Z ) × .
n n n
477 477 4 7 7
851 851 8 5 1
1601 1601 1 6 0 1
χ ( n ) \chi(n) χ ( n )
ζ 40 4 \zeta_{40}^{4} ζ 4 0 4
− 1 -1 − 1
− ζ 40 5 -\zeta_{40}^{5} − ζ 4 0 5
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 29 16 − 4 T 29 15 + 10 T 29 14 − 20 T 29 13 + 34 T 29 12 − 44 T 29 11 + ⋯ + 1 T_{29}^{16} - 4 T_{29}^{15} + 10 T_{29}^{14} - 20 T_{29}^{13} + 34 T_{29}^{12} - 44 T_{29}^{11} + \cdots + 1 T 2 9 1 6 − 4 T 2 9 1 5 + 1 0 T 2 9 1 4 − 2 0 T 2 9 1 3 + 3 4 T 2 9 1 2 − 4 4 T 2 9 1 1 + ⋯ + 1
T29^16 - 4*T29^15 + 10*T29^14 - 20*T29^13 + 34*T29^12 - 44*T29^11 + 32*T29^10 - 60*T29^9 + 156*T29^8 - 284*T29^7 + 382*T29^6 - 328*T29^5 + 269*T29^4 - 68*T29^3 - 4*T29^2 + 8*T29 + 1
acting on S 1 n e w ( 1700 , [ χ ] ) S_{1}^{\mathrm{new}}(1700, [\chi]) S 1 n e w ( 1 7 0 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 − T 12 + ⋯ + 1 T^{16} - T^{12} + \cdots + 1 T 1 6 − T 1 2 + ⋯ + 1
T^16 - T^12 + T^8 - T^4 + 1
3 3 3
T 16 T^{16} T 1 6
T^16
5 5 5
T 16 − T 12 + ⋯ + 1 T^{16} - T^{12} + \cdots + 1 T 1 6 − T 1 2 + ⋯ + 1
T^16 - T^12 + T^8 - T^4 + 1
7 7 7
T 16 T^{16} T 1 6
T^16
11 11 1 1
T 16 T^{16} T 1 6
T^16
13 13 1 3
T 16 + 4 T 14 + ⋯ + 1 T^{16} + 4 T^{14} + \cdots + 1 T 1 6 + 4 T 1 4 + ⋯ + 1
T^16 + 4*T^14 + 12*T^12 + 32*T^10 + 150*T^8 - 32*T^6 + 97*T^4 + 16*T^2 + 1
17 17 1 7
( T 8 − T 6 + T 4 + ⋯ + 1 ) 2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} ( T 8 − T 6 + T 4 + ⋯ + 1 ) 2
(T^8 - T^6 + T^4 - T^2 + 1)^2
19 19 1 9
T 16 T^{16} T 1 6
T^16
23 23 2 3
T 16 T^{16} T 1 6
T^16
29 29 2 9
T 16 − 4 T 15 + ⋯ + 1 T^{16} - 4 T^{15} + \cdots + 1 T 1 6 − 4 T 1 5 + ⋯ + 1
T^16 - 4*T^15 + 10*T^14 - 20*T^13 + 34*T^12 - 44*T^11 + 32*T^10 - 60*T^9 + 156*T^8 - 284*T^7 + 382*T^6 - 328*T^5 + 269*T^4 - 68*T^3 - 4*T^2 + 8*T + 1
31 31 3 1
T 16 T^{16} T 1 6
T^16
37 37 3 7
T 16 + 8 T 14 + ⋯ + 1 T^{16} + 8 T^{14} + \cdots + 1 T 1 6 + 8 T 1 4 + ⋯ + 1
T^16 + 8*T^14 - 4*T^13 + 27*T^12 - 24*T^11 + 66*T^10 - 52*T^9 + 120*T^8 - 112*T^7 + 88*T^6 - 132*T^5 + 242*T^4 - 104*T^3 - 12*T^2 + 8*T + 1
41 41 4 1
T 16 + 4 T 15 + ⋯ + 1 T^{16} + 4 T^{15} + \cdots + 1 T 1 6 + 4 T 1 5 + ⋯ + 1
T^16 + 4*T^15 + 10*T^14 + 20*T^13 + 34*T^12 + 44*T^11 + 82*T^10 + 160*T^9 + 256*T^8 + 304*T^7 + 162*T^6 - 72*T^5 - 131*T^4 - 32*T^3 + 46*T^2 - 8*T + 1
43 43 4 3
T 16 T^{16} T 1 6
T^16
47 47 4 7
T 16 T^{16} T 1 6
T^16
53 53 5 3
( T 8 + 8 T 7 + 27 T 6 + ⋯ + 1 ) 2 (T^{8} + 8 T^{7} + 27 T^{6} + \cdots + 1)^{2} ( T 8 + 8 T 7 + 2 7 T 6 + ⋯ + 1 ) 2
(T^8 + 8*T^7 + 27*T^6 + 50*T^5 + 56*T^4 + 40*T^3 + 18*T^2 + 4*T + 1)^2
59 59 5 9
T 16 T^{16} T 1 6
T^16
61 61 6 1
T 16 − 2 T 14 + ⋯ + 1 T^{16} - 2 T^{14} + \cdots + 1 T 1 6 − 2 T 1 4 + ⋯ + 1
T^16 - 2*T^14 - 4*T^13 + 2*T^12 + 16*T^11 + 16*T^10 - 32*T^9 - 100*T^8 - 32*T^7 + 298*T^6 + 628*T^5 + 557*T^4 + 256*T^3 + 68*T^2 + 8*T + 1
67 67 6 7
T 16 T^{16} T 1 6
T^16
71 71 7 1
T 16 T^{16} T 1 6
T^16
73 73 7 3
T 16 + 4 T 15 + ⋯ + 1 T^{16} + 4 T^{15} + \cdots + 1 T 1 6 + 4 T 1 5 + ⋯ + 1
T^16 + 4*T^15 + 10*T^14 + 20*T^13 + 34*T^12 + 44*T^11 + 32*T^10 + 60*T^9 + 156*T^8 + 284*T^7 + 382*T^6 + 328*T^5 + 269*T^4 + 68*T^3 - 4*T^2 - 8*T + 1
79 79 7 9
T 16 T^{16} T 1 6
T^16
83 83 8 3
T 16 T^{16} T 1 6
T^16
89 89 8 9
T 16 − 4 T 14 + ⋯ + 1 T^{16} - 4 T^{14} + \cdots + 1 T 1 6 − 4 T 1 4 + ⋯ + 1
T^16 - 4*T^14 + 17*T^12 - 72*T^10 + 230*T^8 - 228*T^6 + 92*T^4 + 4*T^2 + 1
97 97 9 7
T 16 − 2 T 14 + ⋯ + 1 T^{16} - 2 T^{14} + \cdots + 1 T 1 6 − 2 T 1 4 + ⋯ + 1
T^16 - 2*T^14 + 16*T^13 + 2*T^12 - 24*T^11 + 86*T^10 + 8*T^9 - 80*T^8 + 208*T^7 - 42*T^6 - 112*T^5 + 237*T^4 - 104*T^3 + 58*T^2 - 12*T + 1
show more
show less