L(s) = 1 | + (−0.891 − 0.453i)2-s + (0.587 + 0.809i)4-s + (0.156 + 0.987i)5-s + (−0.156 − 0.987i)8-s + (−0.453 − 0.891i)9-s + (0.309 − 0.951i)10-s + (−0.610 + 1.87i)13-s + (−0.309 + 0.951i)16-s + (0.587 + 0.809i)17-s + 1.00i·18-s + (−0.707 + 0.707i)20-s + (−0.951 + 0.309i)25-s + (1.39 − 1.39i)26-s + (0.678 − 1.10i)29-s + (0.707 − 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.891 − 0.453i)2-s + (0.587 + 0.809i)4-s + (0.156 + 0.987i)5-s + (−0.156 − 0.987i)8-s + (−0.453 − 0.891i)9-s + (0.309 − 0.951i)10-s + (−0.610 + 1.87i)13-s + (−0.309 + 0.951i)16-s + (0.587 + 0.809i)17-s + 1.00i·18-s + (−0.707 + 0.707i)20-s + (−0.951 + 0.309i)25-s + (1.39 − 1.39i)26-s + (0.678 − 1.10i)29-s + (0.707 − 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.321 - 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.321 - 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6298764161\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6298764161\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.891 + 0.453i)T \) |
| 5 | \( 1 + (-0.156 - 0.987i)T \) |
| 17 | \( 1 + (-0.587 - 0.809i)T \) |
good | 3 | \( 1 + (0.453 + 0.891i)T^{2} \) |
| 7 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.987 - 0.156i)T^{2} \) |
| 13 | \( 1 + (0.610 - 1.87i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 23 | \( 1 + (0.987 + 0.156i)T^{2} \) |
| 29 | \( 1 + (-0.678 + 1.10i)T + (-0.453 - 0.891i)T^{2} \) |
| 31 | \( 1 + (0.891 + 0.453i)T^{2} \) |
| 37 | \( 1 + (-0.156 - 1.98i)T + (-0.987 + 0.156i)T^{2} \) |
| 41 | \( 1 + (0.678 - 0.794i)T + (-0.156 - 0.987i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.0489 - 0.309i)T + (-0.951 - 0.309i)T^{2} \) |
| 59 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 61 | \( 1 + (0.133 - 1.70i)T + (-0.987 - 0.156i)T^{2} \) |
| 67 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.453 - 0.891i)T^{2} \) |
| 73 | \( 1 + (0.355 - 0.303i)T + (0.156 - 0.987i)T^{2} \) |
| 79 | \( 1 + (0.891 - 0.453i)T^{2} \) |
| 83 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 89 | \( 1 + (-0.863 + 0.280i)T + (0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.133 - 0.0819i)T + (0.453 + 0.891i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.960986552539537321240042968232, −8.991505647407476249296442685980, −8.261126700119648195222669320440, −7.32409641793615494426424350517, −6.54480319963182285800858624849, −6.16284727622219993066369609558, −4.44717798319235665433057813771, −3.50522680931342568913039156944, −2.65720574737630399167817138641, −1.59517129940446703033594456416,
0.64469698840076051382600093762, 2.06946902812808537977710922995, 3.14344746995284566542877221915, 5.00313887829000998995451102994, 5.22865929413271943713281462763, 6.06803249364087724754721463771, 7.41475349296843563016870800035, 7.80422607845232957776284886377, 8.554859909884754417807897876082, 9.233747905621321413212207371695