L(s) = 1 | + (−2.30 + 2.30i)3-s + (2.30 + 2.30i)7-s − 7.60i·9-s + (−0.302 + 0.302i)11-s − 2.60i·13-s + (2 + 3.60i)17-s + 0.605i·19-s − 10.6·21-s + (4.30 + 4.30i)23-s + (10.6 + 10.6i)27-s + (1.60 + 1.60i)29-s + (4.30 + 4.30i)31-s − 1.39i·33-s + (−3 + 3i)37-s + (6 + 6i)39-s + ⋯ |
L(s) = 1 | + (−1.32 + 1.32i)3-s + (0.870 + 0.870i)7-s − 2.53i·9-s + (−0.0912 + 0.0912i)11-s − 0.722i·13-s + (0.485 + 0.874i)17-s + 0.138i·19-s − 2.31·21-s + (0.897 + 0.897i)23-s + (2.04 + 2.04i)27-s + (0.298 + 0.298i)29-s + (0.772 + 0.772i)31-s − 0.242i·33-s + (−0.493 + 0.493i)37-s + (0.960 + 0.960i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.813 - 0.581i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.813 - 0.581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.045500136\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.045500136\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (-2 - 3.60i)T \) |
good | 3 | \( 1 + (2.30 - 2.30i)T - 3iT^{2} \) |
| 7 | \( 1 + (-2.30 - 2.30i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.302 - 0.302i)T - 11iT^{2} \) |
| 13 | \( 1 + 2.60iT - 13T^{2} \) |
| 19 | \( 1 - 0.605iT - 19T^{2} \) |
| 23 | \( 1 + (-4.30 - 4.30i)T + 23iT^{2} \) |
| 29 | \( 1 + (-1.60 - 1.60i)T + 29iT^{2} \) |
| 31 | \( 1 + (-4.30 - 4.30i)T + 31iT^{2} \) |
| 37 | \( 1 + (3 - 3i)T - 37iT^{2} \) |
| 41 | \( 1 + (-1 + i)T - 41iT^{2} \) |
| 43 | \( 1 - 3.39T + 43T^{2} \) |
| 47 | \( 1 + 4iT - 47T^{2} \) |
| 53 | \( 1 - 5.21T + 53T^{2} \) |
| 59 | \( 1 + 8.60iT - 59T^{2} \) |
| 61 | \( 1 + (6.21 - 6.21i)T - 61iT^{2} \) |
| 67 | \( 1 - 9.21iT - 67T^{2} \) |
| 71 | \( 1 + (-2.90 - 2.90i)T + 71iT^{2} \) |
| 73 | \( 1 + (7 - 7i)T - 73iT^{2} \) |
| 79 | \( 1 + (-0.302 + 0.302i)T - 79iT^{2} \) |
| 83 | \( 1 + 17.8T + 83T^{2} \) |
| 89 | \( 1 + 7.81T + 89T^{2} \) |
| 97 | \( 1 + (-7.60 + 7.60i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.944498258395982737626133235758, −8.919531898706831704382270710349, −8.347640908185483928482189315058, −7.12073884898698697283517499239, −6.04685341136771502362123895661, −5.42143172296256405286973380784, −4.98118680634308648314880820159, −4.00737679954186470530097284791, −3.01012924804501929886288406761, −1.24928660607741693780160164755,
0.56628217038670712899444473794, 1.43408404678366535252819980611, 2.59223156567416492676261322804, 4.39886652455143347172550514407, 4.94910573824371031278311635121, 5.91798297935031790610582591379, 6.68174733899775756522506514174, 7.38321587795640006537612563873, 7.81423155625805755507995289717, 8.850058098915893969900076327910