Properties

Label 1700.2.m.a
Level $1700$
Weight $2$
Character orbit 1700.m
Analytic conductor $13.575$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1700,2,Mod(149,1700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1700.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1700.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5745683436\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{3} + (\beta_{3} - \beta_1 + 1) q^{7} + ( - \beta_{3} - \beta_{2} + 4 \beta_1) q^{9} + (\beta_{2} + 2 \beta_1 + 1) q^{11} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{13} + (\beta_{3} + \beta_{2} + 2) q^{17}+ \cdots + (\beta_{3} - \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{7} + 6 q^{11} + 8 q^{17} - 28 q^{21} + 10 q^{23} + 28 q^{27} - 8 q^{29} + 10 q^{31} - 12 q^{37} + 24 q^{39} + 4 q^{41} + 28 q^{43} - 30 q^{51} - 8 q^{53} - 20 q^{57} + 4 q^{61} + 34 q^{63}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu + 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 3\nu^{2} + 7\nu - 12 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} + \beta _1 - 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{3} - 2\beta_{2} + 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(851\) \(1601\)
\(\chi(n)\) \(-1\) \(1\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
149.1
2.30278i
1.30278i
2.30278i
1.30278i
0 −2.30278 + 2.30278i 0 0 0 2.30278 + 2.30278i 0 7.60555i 0
149.2 0 1.30278 1.30278i 0 0 0 −1.30278 1.30278i 0 0.394449i 0
1449.1 0 −2.30278 2.30278i 0 0 0 2.30278 2.30278i 0 7.60555i 0
1449.2 0 1.30278 + 1.30278i 0 0 0 −1.30278 + 1.30278i 0 0.394449i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.j even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1700.2.m.a 4
5.b even 2 1 1700.2.m.b 4
5.c odd 4 1 68.2.e.a 4
5.c odd 4 1 1700.2.o.c 4
15.e even 4 1 612.2.k.e 4
17.c even 4 1 1700.2.m.b 4
20.e even 4 1 272.2.o.g 4
40.i odd 4 1 1088.2.o.t 4
40.k even 4 1 1088.2.o.s 4
60.l odd 4 1 2448.2.be.u 4
85.f odd 4 1 1156.2.e.c 4
85.f odd 4 1 1700.2.o.c 4
85.g odd 4 1 1156.2.e.c 4
85.i odd 4 1 68.2.e.a 4
85.j even 4 1 inner 1700.2.m.a 4
85.k odd 8 2 1156.2.b.a 4
85.n odd 8 2 1156.2.a.h 4
85.o even 16 4 1156.2.h.e 16
85.r even 16 4 1156.2.h.e 16
255.r even 4 1 612.2.k.e 4
340.i even 4 1 272.2.o.g 4
340.w even 8 2 4624.2.a.bq 4
680.s odd 4 1 1088.2.o.t 4
680.bl even 4 1 1088.2.o.s 4
1020.q odd 4 1 2448.2.be.u 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.2.e.a 4 5.c odd 4 1
68.2.e.a 4 85.i odd 4 1
272.2.o.g 4 20.e even 4 1
272.2.o.g 4 340.i even 4 1
612.2.k.e 4 15.e even 4 1
612.2.k.e 4 255.r even 4 1
1088.2.o.s 4 40.k even 4 1
1088.2.o.s 4 680.bl even 4 1
1088.2.o.t 4 40.i odd 4 1
1088.2.o.t 4 680.s odd 4 1
1156.2.a.h 4 85.n odd 8 2
1156.2.b.a 4 85.k odd 8 2
1156.2.e.c 4 85.f odd 4 1
1156.2.e.c 4 85.g odd 4 1
1156.2.h.e 16 85.o even 16 4
1156.2.h.e 16 85.r even 16 4
1700.2.m.a 4 1.a even 1 1 trivial
1700.2.m.a 4 85.j even 4 1 inner
1700.2.m.b 4 5.b even 2 1
1700.2.m.b 4 17.c even 4 1
1700.2.o.c 4 5.c odd 4 1
1700.2.o.c 4 85.f odd 4 1
2448.2.be.u 4 60.l odd 4 1
2448.2.be.u 4 1020.q odd 4 1
4624.2.a.bq 4 340.w even 8 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 2T_{3}^{3} + 2T_{3}^{2} - 12T_{3} + 36 \) acting on \(S_{2}^{\mathrm{new}}(1700, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 2 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$11$ \( T^{4} - 6 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$13$ \( T^{4} + 28T^{2} + 144 \) Copy content Toggle raw display
$17$ \( (T^{2} - 4 T + 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 44T^{2} + 16 \) Copy content Toggle raw display
$23$ \( T^{4} - 10 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$31$ \( T^{4} - 10 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$37$ \( (T^{2} + 6 T + 18)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 14 T + 36)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 76T^{2} + 144 \) Copy content Toggle raw display
$61$ \( T^{4} - 4 T^{3} + \cdots + 10404 \) Copy content Toggle raw display
$67$ \( T^{4} + 112T^{2} + 2304 \) Copy content Toggle raw display
$71$ \( T^{4} + 10 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$73$ \( (T^{2} + 14 T + 98)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 6 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$83$ \( (T^{2} + 14 T - 68)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 6 T - 108)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 16 T^{3} + \cdots + 36 \) Copy content Toggle raw display
show more
show less