Properties

Label 1156.2.a.h
Level $1156$
Weight $2$
Character orbit 1156.a
Self dual yes
Analytic conductor $9.231$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,2,Mod(1,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 9x^{2} + 10x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 68)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{3} - \beta_{2} q^{5} + (\beta_{2} + \beta_1) q^{7} + ( - \beta_{3} + 4) q^{9} + ( - \beta_{2} + \beta_1) q^{11} + (\beta_{3} + 1) q^{13} + (\beta_{3} - 1) q^{15} + ( - \beta_{3} - 3) q^{19}+ \cdots + (\beta_{2} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{9} + 4 q^{13} - 4 q^{15} - 12 q^{19} + 28 q^{21} - 12 q^{25} + 20 q^{33} - 4 q^{35} + 28 q^{43} + 16 q^{47} + 8 q^{53} + 12 q^{55} + 20 q^{59} + 8 q^{67} + 36 q^{69} + 20 q^{77} + 32 q^{81}+ \cdots - 36 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 9x^{2} + 10x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + \nu^{2} - 11\nu - 8 ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} + 17\nu - 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{3} + 6\nu^{2} + 44\nu - 23 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 2\beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 4\beta _1 + 11 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{3} - 11\beta_{2} + 3\beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.111438
0.888562
3.71699
−2.71699
0 −3.25662 0 1.41421 0 −3.25662 0 7.60555 0
1.2 0 −1.84240 0 −1.41421 0 −1.84240 0 0.394449 0
1.3 0 1.84240 0 1.41421 0 1.84240 0 0.394449 0
1.4 0 3.25662 0 −1.41421 0 3.25662 0 7.60555 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(17\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1156.2.a.h 4
4.b odd 2 1 4624.2.a.bq 4
17.b even 2 1 inner 1156.2.a.h 4
17.c even 4 2 1156.2.b.a 4
17.d even 8 2 68.2.e.a 4
17.d even 8 2 1156.2.e.c 4
17.e odd 16 8 1156.2.h.e 16
51.g odd 8 2 612.2.k.e 4
68.d odd 2 1 4624.2.a.bq 4
68.g odd 8 2 272.2.o.g 4
85.k odd 8 2 1700.2.m.b 4
85.m even 8 2 1700.2.o.c 4
85.n odd 8 2 1700.2.m.a 4
136.o even 8 2 1088.2.o.t 4
136.p odd 8 2 1088.2.o.s 4
204.p even 8 2 2448.2.be.u 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.2.e.a 4 17.d even 8 2
272.2.o.g 4 68.g odd 8 2
612.2.k.e 4 51.g odd 8 2
1088.2.o.s 4 136.p odd 8 2
1088.2.o.t 4 136.o even 8 2
1156.2.a.h 4 1.a even 1 1 trivial
1156.2.a.h 4 17.b even 2 1 inner
1156.2.b.a 4 17.c even 4 2
1156.2.e.c 4 17.d even 8 2
1156.2.h.e 16 17.e odd 16 8
1700.2.m.a 4 85.n odd 8 2
1700.2.m.b 4 85.k odd 8 2
1700.2.o.c 4 85.m even 8 2
2448.2.be.u 4 204.p even 8 2
4624.2.a.bq 4 4.b odd 2 1
4624.2.a.bq 4 68.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 14T_{3}^{2} + 36 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 14T^{2} + 36 \) Copy content Toggle raw display
$5$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 14T^{2} + 36 \) Copy content Toggle raw display
$11$ \( T^{4} - 22T^{2} + 4 \) Copy content Toggle raw display
$13$ \( (T^{2} - 2 T - 12)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 6 T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 38T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{4} - 68T^{2} + 324 \) Copy content Toggle raw display
$31$ \( T^{4} - 38T^{2} + 36 \) Copy content Toggle raw display
$37$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 14 T + 36)^{2} \) Copy content Toggle raw display
$47$ \( (T - 4)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 4 T - 48)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 10 T + 12)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 212 T^{2} + 10404 \) Copy content Toggle raw display
$67$ \( (T^{2} - 4 T - 48)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 142T^{2} + 2116 \) Copy content Toggle raw display
$73$ \( (T^{2} - 98)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 22T^{2} + 4 \) Copy content Toggle raw display
$83$ \( (T^{2} - 14 T - 68)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 6 T - 108)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 116T^{2} + 36 \) Copy content Toggle raw display
show more
show less