Properties

Label 2-171-1.1-c9-0-8
Degree $2$
Conductor $171$
Sign $1$
Analytic cond. $88.0711$
Root an. cond. $9.38462$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16.4·2-s − 242.·4-s − 702.·5-s − 3.56e3·7-s + 1.23e4·8-s + 1.15e4·10-s + 3.38e4·11-s − 2.28e4·13-s + 5.85e4·14-s − 7.95e4·16-s + 7.19e4·17-s − 1.30e5·19-s + 1.70e5·20-s − 5.56e5·22-s − 7.58e5·23-s − 1.45e6·25-s + 3.74e5·26-s + 8.62e5·28-s − 6.67e6·29-s + 2.64e6·31-s − 5.03e6·32-s − 1.18e6·34-s + 2.50e6·35-s − 8.03e6·37-s + 2.14e6·38-s − 8.70e6·40-s + 2.60e7·41-s + ⋯
L(s)  = 1  − 0.726·2-s − 0.472·4-s − 0.502·5-s − 0.560·7-s + 1.06·8-s + 0.365·10-s + 0.697·11-s − 0.221·13-s + 0.407·14-s − 0.303·16-s + 0.208·17-s − 0.229·19-s + 0.237·20-s − 0.506·22-s − 0.565·23-s − 0.747·25-s + 0.160·26-s + 0.265·28-s − 1.75·29-s + 0.514·31-s − 0.849·32-s − 0.151·34-s + 0.282·35-s − 0.704·37-s + 0.166·38-s − 0.537·40-s + 1.43·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(171\)    =    \(3^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(88.0711\)
Root analytic conductor: \(9.38462\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 171,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.5644209044\)
\(L(\frac12)\) \(\approx\) \(0.5644209044\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 + 1.30e5T \)
good2 \( 1 + 16.4T + 512T^{2} \)
5 \( 1 + 702.T + 1.95e6T^{2} \)
7 \( 1 + 3.56e3T + 4.03e7T^{2} \)
11 \( 1 - 3.38e4T + 2.35e9T^{2} \)
13 \( 1 + 2.28e4T + 1.06e10T^{2} \)
17 \( 1 - 7.19e4T + 1.18e11T^{2} \)
23 \( 1 + 7.58e5T + 1.80e12T^{2} \)
29 \( 1 + 6.67e6T + 1.45e13T^{2} \)
31 \( 1 - 2.64e6T + 2.64e13T^{2} \)
37 \( 1 + 8.03e6T + 1.29e14T^{2} \)
41 \( 1 - 2.60e7T + 3.27e14T^{2} \)
43 \( 1 + 8.94e6T + 5.02e14T^{2} \)
47 \( 1 - 2.50e6T + 1.11e15T^{2} \)
53 \( 1 + 1.48e7T + 3.29e15T^{2} \)
59 \( 1 + 3.87e6T + 8.66e15T^{2} \)
61 \( 1 + 1.11e8T + 1.16e16T^{2} \)
67 \( 1 + 7.98e7T + 2.72e16T^{2} \)
71 \( 1 - 5.48e7T + 4.58e16T^{2} \)
73 \( 1 + 2.09e8T + 5.88e16T^{2} \)
79 \( 1 - 1.80e7T + 1.19e17T^{2} \)
83 \( 1 - 4.46e8T + 1.86e17T^{2} \)
89 \( 1 + 6.00e7T + 3.50e17T^{2} \)
97 \( 1 + 6.16e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90741412352621182109317185275, −9.807576275318366693555016835012, −9.177035831582935952264393463389, −8.090616142188245997144773704286, −7.23629487453571796886688284794, −5.89895179682259501757060642611, −4.44464785004045418716312807342, −3.52322405152458787028951214881, −1.75853167905882841021963673727, −0.42063026014026212245958206744, 0.42063026014026212245958206744, 1.75853167905882841021963673727, 3.52322405152458787028951214881, 4.44464785004045418716312807342, 5.89895179682259501757060642611, 7.23629487453571796886688284794, 8.090616142188245997144773704286, 9.177035831582935952264393463389, 9.807576275318366693555016835012, 10.90741412352621182109317185275

Graph of the $Z$-function along the critical line