Properties

Label 171.10.a.c
Level $171$
Weight $10$
Character orbit 171.a
Self dual yes
Analytic conductor $88.071$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,10,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(88.0711279840\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 2124x^{4} - 384x^{3} + 1071312x^{2} + 1260144x - 135644992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 6) q^{2} + (\beta_{4} - 3 \beta_{2} - 7 \beta_1 + 230) q^{4} + ( - \beta_{5} + 5 \beta_{4} + \cdots + 588) q^{5} + (10 \beta_{5} + 11 \beta_{4} + \cdots + 748) q^{7} + ( - 14 \beta_{5} + 15 \beta_{4} + \cdots + 3954) q^{8}+ \cdots + (1716 \beta_{5} + 3648700 \beta_{4} + \cdots + 710214360) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 33 q^{2} + 1365 q^{4} + 3612 q^{5} + 4085 q^{7} + 23511 q^{8} - 93884 q^{10} + 69312 q^{11} - 191747 q^{13} + 644691 q^{14} + 13905 q^{16} + 288195 q^{17} - 781926 q^{19} + 1551444 q^{20} + 2409710 q^{22}+ \cdots + 4245664590 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 2124x^{4} - 384x^{3} + 1071312x^{2} + 1260144x - 135644992 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -61\nu^{5} + 2813\nu^{4} + 99542\nu^{3} - 5193940\nu^{2} - 26359096\nu + 1606478048 ) / 3181056 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 11\nu^{5} - 107\nu^{4} - 15034\nu^{3} + 104524\nu^{2} + 594440\nu - 28812320 ) / 167424 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -61\nu^{5} + 2813\nu^{4} + 99542\nu^{3} - 4133588\nu^{2} - 31660856\nu + 857869536 ) / 1060352 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -65\nu^{5} + 553\nu^{4} + 116662\nu^{3} - 538052\nu^{2} - 34726712\nu + 98477920 ) / 397632 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5\beta _1 + 706 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 14\beta_{5} + 3\beta_{4} + 36\beta_{3} - 5\beta_{2} + 1143\beta _1 + 2826 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -102\beta_{5} + 2057\beta_{4} + 156\beta_{3} - 4767\beta_{2} + 12457\beta _1 + 795310 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 18142\beta_{5} + 14607\beta_{4} + 65940\beta_{3} - 24697\beta_{2} + 1581791\beta _1 + 7509330 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
40.3588
22.4279
12.6748
−15.8741
−20.8288
−35.7587
−34.3588 0 668.525 2543.32 0 994.457 −5378.01 0 −87385.2
1.2 −16.4279 0 −242.124 −702.910 0 −3562.17 12388.7 0 11547.3
1.3 −6.67485 0 −467.446 2305.86 0 −8934.31 6537.66 0 −15391.2
1.4 21.8741 0 −33.5233 698.718 0 5865.75 −11932.8 0 15283.8
1.5 26.8288 0 207.783 −2247.10 0 −1771.60 −8161.78 0 −60287.0
1.6 41.7587 0 1231.79 1014.12 0 11492.9 30057.3 0 42348.3
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 171.10.a.c 6
3.b odd 2 1 19.10.a.a 6
12.b even 2 1 304.10.a.f 6
57.d even 2 1 361.10.a.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.10.a.a 6 3.b odd 2 1
171.10.a.c 6 1.a even 1 1 trivial
304.10.a.f 6 12.b even 2 1
361.10.a.b 6 57.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 33T_{2}^{5} - 1674T_{2}^{4} + 48120T_{2}^{3} + 618576T_{2}^{2} - 12266496T_{2} - 92329216 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(171))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 33 T^{5} + \cdots - 92329216 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 65\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 37\!\cdots\!12 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 36\!\cdots\!88 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 72\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 25\!\cdots\!22 \) Copy content Toggle raw display
$19$ \( (T + 130321)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 10\!\cdots\!72 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 11\!\cdots\!60 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 84\!\cdots\!48 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 51\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 11\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 43\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 47\!\cdots\!12 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 18\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 26\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 11\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 76\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 50\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 69\!\cdots\!46 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 38\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 13\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 13\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 99\!\cdots\!08 \) Copy content Toggle raw display
show more
show less