L(s) = 1 | − 2·4-s − 2.37i·5-s + 4.35·7-s − 6.61i·11-s + 4·16-s + 1.86i·17-s − 4.35·19-s + 4.75i·20-s + 8.99i·23-s − 0.641·25-s − 8.71·28-s − 10.3i·35-s − 43-s + 13.2i·44-s + 6.11i·47-s + ⋯ |
L(s) = 1 | − 4-s − 1.06i·5-s + 1.64·7-s − 1.99i·11-s + 16-s + 0.452i·17-s − 1.00·19-s + 1.06i·20-s + 1.87i·23-s − 0.128·25-s − 1.64·28-s − 1.74i·35-s − 0.152·43-s + 1.99i·44-s + 0.891i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.931848 - 0.482360i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.931848 - 0.482360i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + 4.35T \) |
good | 2 | \( 1 + 2T^{2} \) |
| 5 | \( 1 + 2.37iT - 5T^{2} \) |
| 7 | \( 1 - 4.35T + 7T^{2} \) |
| 11 | \( 1 + 6.61iT - 11T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 1.86iT - 17T^{2} \) |
| 23 | \( 1 - 8.99iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + T + 43T^{2} \) |
| 47 | \( 1 - 6.11iT - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 4.35T + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 11T + 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 17.4iT - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.76832591629747791780056268042, −11.56702058787996924257041615799, −10.78807663601031237718037695283, −9.245015387463118943826530040374, −8.433774734769499447297411708611, −8.022828193466520071020103123035, −5.74748405417098613937629589742, −4.99029040060361356124191245892, −3.84244602729586642983218618364, −1.19761556299323890853626080839,
2.19220898156498664547707092403, 4.30063438461480201546142650044, 4.96946250265873615426572728138, 6.76307186717429580077078497625, 7.79174925641288207389001775538, 8.776685635403250871995095011550, 10.08470214758574881223163686046, 10.74304417909708818750143435461, 11.97359450962457679771706702162, 12.87535129756270034798468957719