L(s) = 1 | − 2·4-s − 2.37i·5-s + 4.35·7-s − 6.61i·11-s + 4·16-s + 1.86i·17-s − 4.35·19-s + 4.75i·20-s + 8.99i·23-s − 0.641·25-s − 8.71·28-s − 10.3i·35-s − 43-s + 13.2i·44-s + 6.11i·47-s + ⋯ |
L(s) = 1 | − 4-s − 1.06i·5-s + 1.64·7-s − 1.99i·11-s + 16-s + 0.452i·17-s − 1.00·19-s + 1.06i·20-s + 1.87i·23-s − 0.128·25-s − 1.64·28-s − 1.74i·35-s − 0.152·43-s + 1.99i·44-s + 0.891i·47-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(0.577+0.816i)Λ(2−s)
Λ(s)=(=(171s/2ΓC(s+1/2)L(s)(0.577+0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
0.577+0.816i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(170,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :1/2), 0.577+0.816i)
|
Particular Values
L(1) |
≈ |
0.931848−0.482360i |
L(21) |
≈ |
0.931848−0.482360i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+4.35T |
good | 2 | 1+2T2 |
| 5 | 1+2.37iT−5T2 |
| 7 | 1−4.35T+7T2 |
| 11 | 1+6.61iT−11T2 |
| 13 | 1−13T2 |
| 17 | 1−1.86iT−17T2 |
| 23 | 1−8.99iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1−31T2 |
| 37 | 1−37T2 |
| 41 | 1+41T2 |
| 43 | 1+T+43T2 |
| 47 | 1−6.11iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1−4.35T+61T2 |
| 67 | 1−67T2 |
| 71 | 1+71T2 |
| 73 | 1−11T+73T2 |
| 79 | 1−79T2 |
| 83 | 1−17.4iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.76832591629747791780056268042, −11.56702058787996924257041615799, −10.78807663601031237718037695283, −9.245015387463118943826530040374, −8.433774734769499447297411708611, −8.022828193466520071020103123035, −5.74748405417098613937629589742, −4.99029040060361356124191245892, −3.84244602729586642983218618364, −1.19761556299323890853626080839,
2.19220898156498664547707092403, 4.30063438461480201546142650044, 4.96946250265873615426572728138, 6.76307186717429580077078497625, 7.79174925641288207389001775538, 8.776685635403250871995095011550, 10.08470214758574881223163686046, 10.74304417909708818750143435461, 11.97359450962457679771706702162, 12.87535129756270034798468957719