Properties

Label 171.2.d.a
Level $171$
Weight $2$
Character orbit 171.d
Analytic conductor $1.365$
Analytic rank $0$
Dimension $4$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(170,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.170");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 20x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{4} + \beta_1 q^{5} + \beta_{3} q^{7} + (\beta_{2} + \beta_1) q^{11} + 4 q^{16} + ( - \beta_{2} + \beta_1) q^{17} - \beta_{3} q^{19} - 2 \beta_1 q^{20} + ( - \beta_{2} - 2 \beta_1) q^{23} + (\beta_{3} - 5) q^{25}+ \cdots + ( - 3 \beta_{2} + \beta_1) q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 16 q^{16} - 20 q^{25} - 4 q^{43} + 48 q^{49} - 28 q^{55} - 32 q^{64} + 44 q^{73} - 52 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 20x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 11\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} - 11\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
170.1
3.78931i
2.37510i
2.37510i
3.78931i
0 0 −2.00000 3.78931i 0 −4.35890 0 0 0
170.2 0 0 −2.00000 2.37510i 0 4.35890 0 0 0
170.3 0 0 −2.00000 2.37510i 0 4.35890 0 0 0
170.4 0 0 −2.00000 3.78931i 0 −4.35890 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
3.b odd 2 1 inner
57.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 171.2.d.a 4
3.b odd 2 1 inner 171.2.d.a 4
4.b odd 2 1 2736.2.f.e 4
12.b even 2 1 2736.2.f.e 4
19.b odd 2 1 CM 171.2.d.a 4
57.d even 2 1 inner 171.2.d.a 4
76.d even 2 1 2736.2.f.e 4
228.b odd 2 1 2736.2.f.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
171.2.d.a 4 1.a even 1 1 trivial
171.2.d.a 4 3.b odd 2 1 inner
171.2.d.a 4 19.b odd 2 1 CM
171.2.d.a 4 57.d even 2 1 inner
2736.2.f.e 4 4.b odd 2 1
2736.2.f.e 4 12.b even 2 1
2736.2.f.e 4 76.d even 2 1
2736.2.f.e 4 228.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(171, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 20T^{2} + 81 \) Copy content Toggle raw display
$7$ \( (T^{2} - 19)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 44T^{2} + 9 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 68T^{2} + 225 \) Copy content Toggle raw display
$19$ \( (T^{2} - 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 92T^{2} + 900 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T + 1)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 188T^{2} + 5625 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 19)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T - 11)^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 332T^{2} + 8100 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less