L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−1.70 − 1.44i)5-s + (0.414 − 0.414i)7-s + (−0.707 + 0.707i)8-s + (−0.185 − 2.22i)10-s + 2.58i·11-s + (−2.88 − 2.88i)13-s + 0.585·14-s − 1.00·16-s + (5.60 + 5.60i)17-s + i·19-s + (1.44 − 1.70i)20-s + (−1.82 + 1.82i)22-s + (0.322 − 0.322i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (−0.763 − 0.645i)5-s + (0.156 − 0.156i)7-s + (−0.250 + 0.250i)8-s + (−0.0587 − 0.704i)10-s + 0.779i·11-s + (−0.801 − 0.801i)13-s + 0.156·14-s − 0.250·16-s + (1.36 + 1.36i)17-s + 0.229i·19-s + (0.322 − 0.381i)20-s + (−0.389 + 0.389i)22-s + (0.0673 − 0.0673i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.144 - 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.144 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.634728658\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.634728658\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.70 + 1.44i)T \) |
| 19 | \( 1 - iT \) |
good | 7 | \( 1 + (-0.414 + 0.414i)T - 7iT^{2} \) |
| 11 | \( 1 - 2.58iT - 11T^{2} \) |
| 13 | \( 1 + (2.88 + 2.88i)T + 13iT^{2} \) |
| 17 | \( 1 + (-5.60 - 5.60i)T + 17iT^{2} \) |
| 23 | \( 1 + (-0.322 + 0.322i)T - 23iT^{2} \) |
| 29 | \( 1 - 5.77T + 29T^{2} \) |
| 31 | \( 1 + 5.13T + 31T^{2} \) |
| 37 | \( 1 + (1.41 - 1.41i)T - 37iT^{2} \) |
| 41 | \( 1 - 5.47iT - 41T^{2} \) |
| 43 | \( 1 + (-2.47 - 2.47i)T + 43iT^{2} \) |
| 47 | \( 1 + (-9.45 - 9.45i)T + 47iT^{2} \) |
| 53 | \( 1 + (4.24 - 4.24i)T - 53iT^{2} \) |
| 59 | \( 1 - 0.302T + 59T^{2} \) |
| 61 | \( 1 - 1.25T + 61T^{2} \) |
| 67 | \( 1 + (-4.30 + 4.30i)T - 67iT^{2} \) |
| 71 | \( 1 - 7.25iT - 71T^{2} \) |
| 73 | \( 1 + (1.82 + 1.82i)T + 73iT^{2} \) |
| 79 | \( 1 - 2.61iT - 79T^{2} \) |
| 83 | \( 1 + (-5.45 + 5.45i)T - 83iT^{2} \) |
| 89 | \( 1 + 7.43T + 89T^{2} \) |
| 97 | \( 1 + (6.23 - 6.23i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.483772434400052406783223357095, −8.475875118925986862840490292652, −7.74650283204344074612155578966, −7.46160796852631665124684089226, −6.23274722833820964168609154032, −5.38564956094928921140459275261, −4.62716232800631871189312389932, −3.88546103137038238990265079400, −2.87270475536537822015484124224, −1.27451845574076676587608614906,
0.57382246165070478779006531283, 2.26587287078861357525870995790, 3.14724805119734103316840303134, 3.90975462724820163939800482527, 4.95989020606652820475778878729, 5.65760434549551029484279875490, 6.88247046386244857184599563256, 7.31228626366400702024643602929, 8.349088284322329198928725467763, 9.219505669826842761131119172751