L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−1.70 − 1.44i)5-s + (0.414 − 0.414i)7-s + (−0.707 + 0.707i)8-s + (−0.185 − 2.22i)10-s + 2.58i·11-s + (−2.88 − 2.88i)13-s + 0.585·14-s − 1.00·16-s + (5.60 + 5.60i)17-s + i·19-s + (1.44 − 1.70i)20-s + (−1.82 + 1.82i)22-s + (0.322 − 0.322i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (−0.763 − 0.645i)5-s + (0.156 − 0.156i)7-s + (−0.250 + 0.250i)8-s + (−0.0587 − 0.704i)10-s + 0.779i·11-s + (−0.801 − 0.801i)13-s + 0.156·14-s − 0.250·16-s + (1.36 + 1.36i)17-s + 0.229i·19-s + (0.322 − 0.381i)20-s + (−0.389 + 0.389i)22-s + (0.0673 − 0.0673i)23-s + ⋯ |
Λ(s)=(=(1710s/2ΓC(s)L(s)(−0.144−0.989i)Λ(2−s)
Λ(s)=(=(1710s/2ΓC(s+1/2)L(s)(−0.144−0.989i)Λ(1−s)
Degree: |
2 |
Conductor: |
1710
= 2⋅32⋅5⋅19
|
Sign: |
−0.144−0.989i
|
Analytic conductor: |
13.6544 |
Root analytic conductor: |
3.69518 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1710(1673,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1710, ( :1/2), −0.144−0.989i)
|
Particular Values
L(1) |
≈ |
1.634728658 |
L(21) |
≈ |
1.634728658 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 3 | 1 |
| 5 | 1+(1.70+1.44i)T |
| 19 | 1−iT |
good | 7 | 1+(−0.414+0.414i)T−7iT2 |
| 11 | 1−2.58iT−11T2 |
| 13 | 1+(2.88+2.88i)T+13iT2 |
| 17 | 1+(−5.60−5.60i)T+17iT2 |
| 23 | 1+(−0.322+0.322i)T−23iT2 |
| 29 | 1−5.77T+29T2 |
| 31 | 1+5.13T+31T2 |
| 37 | 1+(1.41−1.41i)T−37iT2 |
| 41 | 1−5.47iT−41T2 |
| 43 | 1+(−2.47−2.47i)T+43iT2 |
| 47 | 1+(−9.45−9.45i)T+47iT2 |
| 53 | 1+(4.24−4.24i)T−53iT2 |
| 59 | 1−0.302T+59T2 |
| 61 | 1−1.25T+61T2 |
| 67 | 1+(−4.30+4.30i)T−67iT2 |
| 71 | 1−7.25iT−71T2 |
| 73 | 1+(1.82+1.82i)T+73iT2 |
| 79 | 1−2.61iT−79T2 |
| 83 | 1+(−5.45+5.45i)T−83iT2 |
| 89 | 1+7.43T+89T2 |
| 97 | 1+(6.23−6.23i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.483772434400052406783223357095, −8.475875118925986862840490292652, −7.74650283204344074612155578966, −7.46160796852631665124684089226, −6.23274722833820964168609154032, −5.38564956094928921140459275261, −4.62716232800631871189312389932, −3.88546103137038238990265079400, −2.87270475536537822015484124224, −1.27451845574076676587608614906,
0.57382246165070478779006531283, 2.26587287078861357525870995790, 3.14724805119734103316840303134, 3.90975462724820163939800482527, 4.95989020606652820475778878729, 5.65760434549551029484279875490, 6.88247046386244857184599563256, 7.31228626366400702024643602929, 8.349088284322329198928725467763, 9.219505669826842761131119172751