Properties

Label 1710.2.n.f
Level 17101710
Weight 22
Character orbit 1710.n
Analytic conductor 13.65413.654
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(647,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1710.n (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.654418745613.6544187456
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: 8.0.110166016.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+10x6+19x4+10x2+1 x^{8} + 10x^{6} + 19x^{4} + 10x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q2+β5q4+(β7+β31)q5+(β52β31)q7+β3q8+(β6+β2)q10+(4β5β3+β2)q11++(4β5+β34)q98+O(q100) q - \beta_{2} q^{2} + \beta_{5} q^{4} + ( - \beta_{7} + \beta_{3} - 1) q^{5} + (\beta_{5} - 2 \beta_{3} - 1) q^{7} + \beta_{3} q^{8} + (\beta_{6} + \beta_{2}) q^{10} + (4 \beta_{5} - \beta_{3} + \beta_{2}) q^{11}+ \cdots + (4 \beta_{5} + \beta_{3} - 4) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q58q74q10+16q148q16+8q22+8q2316q258q28+16q31+4q40+8q4332q4424q46+24q47+16q5032q5924q62+32q98+O(q100) 8 q - 8 q^{5} - 8 q^{7} - 4 q^{10} + 16 q^{14} - 8 q^{16} + 8 q^{22} + 8 q^{23} - 16 q^{25} - 8 q^{28} + 16 q^{31} + 4 q^{40} + 8 q^{43} - 32 q^{44} - 24 q^{46} + 24 q^{47} + 16 q^{50} - 32 q^{59} - 24 q^{62}+ \cdots - 32 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+10x6+19x4+10x2+1 x^{8} + 10x^{6} + 19x^{4} + 10x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== (ν4+9ν2+7)/2 ( \nu^{4} + 9\nu^{2} + 7 ) / 2 Copy content Toggle raw display
β2\beta_{2}== (ν6+ν5+10ν4+9ν3+18ν2+9ν+5)/4 ( \nu^{6} + \nu^{5} + 10\nu^{4} + 9\nu^{3} + 18\nu^{2} + 9\nu + 5 ) / 4 Copy content Toggle raw display
β3\beta_{3}== (ν6ν5+10ν49ν3+18ν29ν+5)/4 ( \nu^{6} - \nu^{5} + 10\nu^{4} - 9\nu^{3} + 18\nu^{2} - 9\nu + 5 ) / 4 Copy content Toggle raw display
β4\beta_{4}== (3ν6+ν5+28ν4+9ν3+40ν2+13ν+13)/4 ( 3\nu^{6} + \nu^{5} + 28\nu^{4} + 9\nu^{3} + 40\nu^{2} + 13\nu + 13 ) / 4 Copy content Toggle raw display
β5\beta_{5}== (2ν7+19ν5+29ν3+9ν)/2 ( 2\nu^{7} + 19\nu^{5} + 29\nu^{3} + 9\nu ) / 2 Copy content Toggle raw display
β6\beta_{6}== (3ν6+ν528ν4+9ν340ν2+13ν13)/4 ( -3\nu^{6} + \nu^{5} - 28\nu^{4} + 9\nu^{3} - 40\nu^{2} + 13\nu - 13 ) / 4 Copy content Toggle raw display
β7\beta_{7}== (3ν7+29ν5+47ν3+14ν)/2 ( 3\nu^{7} + 29\nu^{5} + 47\nu^{3} + 14\nu ) / 2 Copy content Toggle raw display
ν\nu== (β6+β4+β3β2)/2 ( \beta_{6} + \beta_{4} + \beta_{3} - \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β6+β43β33β2+2β16)/2 ( -\beta_{6} + \beta_{4} - 3\beta_{3} - 3\beta_{2} + 2\beta _1 - 6 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== 2β72β6+3β52β43β3+3β2 -2\beta_{7} - 2\beta_{6} + 3\beta_{5} - 2\beta_{4} - 3\beta_{3} + 3\beta_{2} Copy content Toggle raw display
ν4\nu^{4}== (9β69β4+27β3+27β214β1+40)/2 ( 9\beta_{6} - 9\beta_{4} + 27\beta_{3} + 27\beta_{2} - 14\beta _1 + 40 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (36β7+27β654β5+27β4+41β341β2)/2 ( 36\beta_{7} + 27\beta_{6} - 54\beta_{5} + 27\beta_{4} + 41\beta_{3} - 41\beta_{2} ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 36β6+36β4106β3106β2+52β1151 -36\beta_{6} + 36\beta_{4} - 106\beta_{3} - 106\beta_{2} + 52\beta _1 - 151 Copy content Toggle raw display
ν7\nu^{7}== (284β7203β6+428β5203β4307β3+307β2)/2 ( -284\beta_{7} - 203\beta_{6} + 428\beta_{5} - 203\beta_{4} - 307\beta_{3} + 307\beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1710Z)×\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times.

nn 191191 10271027 13511351
χ(n)\chi(n) 1-1 β5-\beta_{5} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
647.1
2.77462i
0.360409i
1.22833i
0.814115i
0.360409i
2.77462i
0.814115i
1.22833i
−0.707107 + 0.707107i 0 1.00000i −0.292893 2.21680i 0 −2.41421 2.41421i 0.707107 + 0.707107i 0 1.77462 + 1.36041i
647.2 −0.707107 + 0.707107i 0 1.00000i −0.292893 + 2.21680i 0 −2.41421 2.41421i 0.707107 + 0.707107i 0 −1.36041 1.77462i
647.3 0.707107 0.707107i 0 1.00000i −1.70711 1.44423i 0 0.414214 + 0.414214i −0.707107 0.707107i 0 −2.22833 + 0.185885i
647.4 0.707107 0.707107i 0 1.00000i −1.70711 + 1.44423i 0 0.414214 + 0.414214i −0.707107 0.707107i 0 −0.185885 + 2.22833i
1673.1 −0.707107 0.707107i 0 1.00000i −0.292893 2.21680i 0 −2.41421 + 2.41421i 0.707107 0.707107i 0 −1.36041 + 1.77462i
1673.2 −0.707107 0.707107i 0 1.00000i −0.292893 + 2.21680i 0 −2.41421 + 2.41421i 0.707107 0.707107i 0 1.77462 1.36041i
1673.3 0.707107 + 0.707107i 0 1.00000i −1.70711 1.44423i 0 0.414214 0.414214i −0.707107 + 0.707107i 0 −0.185885 2.22833i
1673.4 0.707107 + 0.707107i 0 1.00000i −1.70711 + 1.44423i 0 0.414214 0.414214i −0.707107 + 0.707107i 0 −2.22833 0.185885i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 647.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.2.n.f 8
3.b odd 2 1 1710.2.n.g yes 8
5.c odd 4 1 1710.2.n.g yes 8
15.e even 4 1 inner 1710.2.n.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1710.2.n.f 8 1.a even 1 1 trivial
1710.2.n.f 8 15.e even 4 1 inner
1710.2.n.g yes 8 3.b odd 2 1
1710.2.n.g yes 8 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1710,[χ])S_{2}^{\mathrm{new}}(1710, [\chi]):

T74+4T73+8T728T7+4 T_{7}^{4} + 4T_{7}^{3} + 8T_{7}^{2} - 8T_{7} + 4 Copy content Toggle raw display
T178+192T175+2160T174+8448T173+18432T172+21504T17+12544 T_{17}^{8} + 192T_{17}^{5} + 2160T_{17}^{4} + 8448T_{17}^{3} + 18432T_{17}^{2} + 21504T_{17} + 12544 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T4+4T3+12T2++25)2 (T^{4} + 4 T^{3} + 12 T^{2} + \cdots + 25)^{2} Copy content Toggle raw display
77 (T4+4T3+8T2++4)2 (T^{4} + 4 T^{3} + 8 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
1111 (T4+36T2+196)2 (T^{4} + 36 T^{2} + 196)^{2} Copy content Toggle raw display
1313 T8+1824T4+430336 T^{8} + 1824 T^{4} + 430336 Copy content Toggle raw display
1717 T8+192T5++12544 T^{8} + 192 T^{5} + \cdots + 12544 Copy content Toggle raw display
1919 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
2323 T88T7++256 T^{8} - 8 T^{7} + \cdots + 256 Copy content Toggle raw display
2929 (T4112T2+2624)2 (T^{4} - 112 T^{2} + 2624)^{2} Copy content Toggle raw display
3131 (T48T340T2+64)2 (T^{4} - 8 T^{3} - 40 T^{2} + \cdots - 64)^{2} Copy content Toggle raw display
3737 (T4+16)2 (T^{4} + 16)^{2} Copy content Toggle raw display
4141 T8+128T6++256 T^{8} + 128 T^{6} + \cdots + 256 Copy content Toggle raw display
4343 T88T7++204304 T^{8} - 8 T^{7} + \cdots + 204304 Copy content Toggle raw display
4747 T824T7++1679616 T^{8} - 24 T^{7} + \cdots + 1679616 Copy content Toggle raw display
5353 (T4+1296)2 (T^{4} + 1296)^{2} Copy content Toggle raw display
5959 (T4+16T3+16)2 (T^{4} + 16 T^{3} + \cdots - 16)^{2} Copy content Toggle raw display
6161 (T472T2++272)2 (T^{4} - 72 T^{2} + \cdots + 272)^{2} Copy content Toggle raw display
6767 T8128T5++200704 T^{8} - 128 T^{5} + \cdots + 200704 Copy content Toggle raw display
7171 T8+288T6++65536 T^{8} + 288 T^{6} + \cdots + 65536 Copy content Toggle raw display
7373 (T44T3++196)2 (T^{4} - 4 T^{3} + \cdots + 196)^{2} Copy content Toggle raw display
7979 T8+240T6++4096 T^{8} + 240 T^{6} + \cdots + 4096 Copy content Toggle raw display
8383 T896T5++99361024 T^{8} - 96 T^{5} + \cdots + 99361024 Copy content Toggle raw display
8989 (T4+8T3+4112)2 (T^{4} + 8 T^{3} + \cdots - 4112)^{2} Copy content Toggle raw display
9797 T824T7++9834496 T^{8} - 24 T^{7} + \cdots + 9834496 Copy content Toggle raw display
show more
show less