Properties

Label 1710.2.n.f
Level $1710$
Weight $2$
Character orbit 1710.n
Analytic conductor $13.654$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(647,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.110166016.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 10x^{6} + 19x^{4} + 10x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + \beta_{5} q^{4} + ( - \beta_{7} + \beta_{3} - 1) q^{5} + (\beta_{5} - 2 \beta_{3} - 1) q^{7} + \beta_{3} q^{8} + (\beta_{6} + \beta_{2}) q^{10} + (4 \beta_{5} - \beta_{3} + \beta_{2}) q^{11}+ \cdots + (4 \beta_{5} + \beta_{3} - 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{7} - 4 q^{10} + 16 q^{14} - 8 q^{16} + 8 q^{22} + 8 q^{23} - 16 q^{25} - 8 q^{28} + 16 q^{31} + 4 q^{40} + 8 q^{43} - 32 q^{44} - 24 q^{46} + 24 q^{47} + 16 q^{50} - 32 q^{59} - 24 q^{62}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 10x^{6} + 19x^{4} + 10x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{4} + 9\nu^{2} + 7 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + \nu^{5} + 10\nu^{4} + 9\nu^{3} + 18\nu^{2} + 9\nu + 5 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - \nu^{5} + 10\nu^{4} - 9\nu^{3} + 18\nu^{2} - 9\nu + 5 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{6} + \nu^{5} + 28\nu^{4} + 9\nu^{3} + 40\nu^{2} + 13\nu + 13 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{7} + 19\nu^{5} + 29\nu^{3} + 9\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -3\nu^{6} + \nu^{5} - 28\nu^{4} + 9\nu^{3} - 40\nu^{2} + 13\nu - 13 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 3\nu^{7} + 29\nu^{5} + 47\nu^{3} + 14\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + \beta_{4} + \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{6} + \beta_{4} - 3\beta_{3} - 3\beta_{2} + 2\beta _1 - 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{7} - 2\beta_{6} + 3\beta_{5} - 2\beta_{4} - 3\beta_{3} + 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 9\beta_{6} - 9\beta_{4} + 27\beta_{3} + 27\beta_{2} - 14\beta _1 + 40 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 36\beta_{7} + 27\beta_{6} - 54\beta_{5} + 27\beta_{4} + 41\beta_{3} - 41\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -36\beta_{6} + 36\beta_{4} - 106\beta_{3} - 106\beta_{2} + 52\beta _1 - 151 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -284\beta_{7} - 203\beta_{6} + 428\beta_{5} - 203\beta_{4} - 307\beta_{3} + 307\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(-\beta_{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
647.1
2.77462i
0.360409i
1.22833i
0.814115i
0.360409i
2.77462i
0.814115i
1.22833i
−0.707107 + 0.707107i 0 1.00000i −0.292893 2.21680i 0 −2.41421 2.41421i 0.707107 + 0.707107i 0 1.77462 + 1.36041i
647.2 −0.707107 + 0.707107i 0 1.00000i −0.292893 + 2.21680i 0 −2.41421 2.41421i 0.707107 + 0.707107i 0 −1.36041 1.77462i
647.3 0.707107 0.707107i 0 1.00000i −1.70711 1.44423i 0 0.414214 + 0.414214i −0.707107 0.707107i 0 −2.22833 + 0.185885i
647.4 0.707107 0.707107i 0 1.00000i −1.70711 + 1.44423i 0 0.414214 + 0.414214i −0.707107 0.707107i 0 −0.185885 + 2.22833i
1673.1 −0.707107 0.707107i 0 1.00000i −0.292893 2.21680i 0 −2.41421 + 2.41421i 0.707107 0.707107i 0 −1.36041 + 1.77462i
1673.2 −0.707107 0.707107i 0 1.00000i −0.292893 + 2.21680i 0 −2.41421 + 2.41421i 0.707107 0.707107i 0 1.77462 1.36041i
1673.3 0.707107 + 0.707107i 0 1.00000i −1.70711 1.44423i 0 0.414214 0.414214i −0.707107 + 0.707107i 0 −0.185885 2.22833i
1673.4 0.707107 + 0.707107i 0 1.00000i −1.70711 + 1.44423i 0 0.414214 0.414214i −0.707107 + 0.707107i 0 −2.22833 0.185885i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 647.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.2.n.f 8
3.b odd 2 1 1710.2.n.g yes 8
5.c odd 4 1 1710.2.n.g yes 8
15.e even 4 1 inner 1710.2.n.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1710.2.n.f 8 1.a even 1 1 trivial
1710.2.n.f 8 15.e even 4 1 inner
1710.2.n.g yes 8 3.b odd 2 1
1710.2.n.g yes 8 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1710, [\chi])\):

\( T_{7}^{4} + 4T_{7}^{3} + 8T_{7}^{2} - 8T_{7} + 4 \) Copy content Toggle raw display
\( T_{17}^{8} + 192T_{17}^{5} + 2160T_{17}^{4} + 8448T_{17}^{3} + 18432T_{17}^{2} + 21504T_{17} + 12544 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 4 T^{3} + 12 T^{2} + \cdots + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 4 T^{3} + 8 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 36 T^{2} + 196)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + 1824 T^{4} + 430336 \) Copy content Toggle raw display
$17$ \( T^{8} + 192 T^{5} + \cdots + 12544 \) Copy content Toggle raw display
$19$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} - 8 T^{7} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( (T^{4} - 112 T^{2} + 2624)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 8 T^{3} - 40 T^{2} + \cdots - 64)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 16)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + 128 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$43$ \( T^{8} - 8 T^{7} + \cdots + 204304 \) Copy content Toggle raw display
$47$ \( T^{8} - 24 T^{7} + \cdots + 1679616 \) Copy content Toggle raw display
$53$ \( (T^{4} + 1296)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 16 T^{3} + \cdots - 16)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 72 T^{2} + \cdots + 272)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} - 128 T^{5} + \cdots + 200704 \) Copy content Toggle raw display
$71$ \( T^{8} + 288 T^{6} + \cdots + 65536 \) Copy content Toggle raw display
$73$ \( (T^{4} - 4 T^{3} + \cdots + 196)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + 240 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$83$ \( T^{8} - 96 T^{5} + \cdots + 99361024 \) Copy content Toggle raw display
$89$ \( (T^{4} + 8 T^{3} + \cdots - 4112)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} - 24 T^{7} + \cdots + 9834496 \) Copy content Toggle raw display
show more
show less