Properties

Label 1710.2.n
Level 17101710
Weight 22
Character orbit 1710.n
Rep. character χ1710(647,)\chi_{1710}(647,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 7272
Newform subspaces 99
Sturm bound 720720
Trace bound 1010

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1710.n (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 15 15
Character field: Q(i)\Q(i)
Newform subspaces: 9 9
Sturm bound: 720720
Trace bound: 1010
Distinguishing TpT_p: 77, 1717

Dimensions

The following table gives the dimensions of various subspaces of M2(1710,[χ])M_{2}(1710, [\chi]).

Total New Old
Modular forms 752 72 680
Cusp forms 688 72 616
Eisenstein series 64 0 64

Trace form

72q16q7+16q108q1372q16+16q2216q28+32q318q37+8q40+16q4332q46+8q5216q558q5864q6164q67+48q70++88q97+O(q100) 72 q - 16 q^{7} + 16 q^{10} - 8 q^{13} - 72 q^{16} + 16 q^{22} - 16 q^{28} + 32 q^{31} - 8 q^{37} + 8 q^{40} + 16 q^{43} - 32 q^{46} + 8 q^{52} - 16 q^{55} - 8 q^{58} - 64 q^{61} - 64 q^{67} + 48 q^{70}+ \cdots + 88 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1710,[χ])S_{2}^{\mathrm{new}}(1710, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1710.2.n.a 1710.n 15.e 44 13.65413.654 Q(ζ8)\Q(\zeta_{8}) None 1710.2.n.a 00 00 00 12-12 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qζ83q2ζ82q4+(2ζ8+ζ83)q5+q-\zeta_{8}^{3}q^{2}-\zeta_{8}^{2}q^{4}+(-2\zeta_{8}+\zeta_{8}^{3})q^{5}+\cdots
1710.2.n.b 1710.n 15.e 44 13.65413.654 Q(ζ8)\Q(\zeta_{8}) None 1710.2.n.b 00 00 00 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+ζ8q2+ζ82q4+(2ζ8ζ83)q5+q+\zeta_{8}q^{2}+\zeta_{8}^{2}q^{4}+(-2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots
1710.2.n.c 1710.n 15.e 44 13.65413.654 Q(ζ8)\Q(\zeta_{8}) None 1710.2.n.c 00 00 00 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qζ8q2+ζ82q4+(ζ8+2ζ83)q5+q-\zeta_{8}q^{2}+\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots
1710.2.n.d 1710.n 15.e 44 13.65413.654 Q(ζ8)\Q(\zeta_{8}) None 1710.2.n.d 00 00 00 88 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qζ8q2+ζ82q4+(ζ8+2ζ83)q5+q-\zeta_{8}q^{2}+\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots
1710.2.n.e 1710.n 15.e 44 13.65413.654 Q(ζ8)\Q(\zeta_{8}) None 1710.2.n.e 00 00 00 1212 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+ζ83q2ζ82q4+(ζ8+2ζ83)q5+q+\zeta_{8}^{3}q^{2}-\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots
1710.2.n.f 1710.n 15.e 88 13.65413.654 8.0.110166016.2 None 1710.2.n.f 00 00 8-8 8-8 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ2q2+β5q4+(1+β3β7)q5+q-\beta _{2}q^{2}+\beta _{5}q^{4}+(-1+\beta _{3}-\beta _{7})q^{5}+\cdots
1710.2.n.g 1710.n 15.e 88 13.65413.654 8.0.110166016.2 None 1710.2.n.f 00 00 88 8-8 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β2q2+β5q4+(1β2β7)q5+q+\beta _{2}q^{2}+\beta _{5}q^{4}+(1-\beta _{2}-\beta _{7})q^{5}+\cdots
1710.2.n.h 1710.n 15.e 1616 13.65413.654 16.0.\cdots.1 None 1710.2.n.h 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ5q2+β9q4+(β1β15)q5+(β4+)q7+q-\beta _{5}q^{2}+\beta _{9}q^{4}+(\beta _{1}-\beta _{15})q^{5}+(\beta _{4}+\cdots)q^{7}+\cdots
1710.2.n.i 1710.n 15.e 2020 13.65413.654 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 1710.2.n.i 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ7q2β10q4+β14q5+β17q7+q-\beta _{7}q^{2}-\beta _{10}q^{4}+\beta _{14}q^{5}+\beta _{17}q^{7}+\cdots

Decomposition of S2old(1710,[χ])S_{2}^{\mathrm{old}}(1710, [\chi]) into lower level spaces

S2old(1710,[χ]) S_{2}^{\mathrm{old}}(1710, [\chi]) \simeq S2new(30,[χ])S_{2}^{\mathrm{new}}(30, [\chi])4^{\oplus 4}\oplusS2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])4^{\oplus 4}\oplusS2new(90,[χ])S_{2}^{\mathrm{new}}(90, [\chi])2^{\oplus 2}\oplusS2new(285,[χ])S_{2}^{\mathrm{new}}(285, [\chi])4^{\oplus 4}\oplusS2new(570,[χ])S_{2}^{\mathrm{new}}(570, [\chi])2^{\oplus 2}\oplusS2new(855,[χ])S_{2}^{\mathrm{new}}(855, [\chi])2^{\oplus 2}