Properties

Label 1710.2.n
Level $1710$
Weight $2$
Character orbit 1710.n
Rep. character $\chi_{1710}(647,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $72$
Newform subspaces $9$
Sturm bound $720$
Trace bound $10$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 9 \)
Sturm bound: \(720\)
Trace bound: \(10\)
Distinguishing \(T_p\): \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1710, [\chi])\).

Total New Old
Modular forms 752 72 680
Cusp forms 688 72 616
Eisenstein series 64 0 64

Trace form

\( 72 q - 16 q^{7} + 16 q^{10} - 8 q^{13} - 72 q^{16} + 16 q^{22} - 16 q^{28} + 32 q^{31} - 8 q^{37} + 8 q^{40} + 16 q^{43} - 32 q^{46} + 8 q^{52} - 16 q^{55} - 8 q^{58} - 64 q^{61} - 64 q^{67} + 48 q^{70}+ \cdots + 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1710, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1710.2.n.a 1710.n 15.e $4$ $13.654$ \(\Q(\zeta_{8})\) None 1710.2.n.a \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}^{3}q^{2}-\zeta_{8}^{2}q^{4}+(-2\zeta_{8}+\zeta_{8}^{3})q^{5}+\cdots\)
1710.2.n.b 1710.n 15.e $4$ $13.654$ \(\Q(\zeta_{8})\) None 1710.2.n.b \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}+\zeta_{8}^{2}q^{4}+(-2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots\)
1710.2.n.c 1710.n 15.e $4$ $13.654$ \(\Q(\zeta_{8})\) None 1710.2.n.c \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}q^{2}+\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots\)
1710.2.n.d 1710.n 15.e $4$ $13.654$ \(\Q(\zeta_{8})\) None 1710.2.n.d \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}q^{2}+\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots\)
1710.2.n.e 1710.n 15.e $4$ $13.654$ \(\Q(\zeta_{8})\) None 1710.2.n.e \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}^{3}q^{2}-\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots\)
1710.2.n.f 1710.n 15.e $8$ $13.654$ 8.0.110166016.2 None 1710.2.n.f \(0\) \(0\) \(-8\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{2}+\beta _{5}q^{4}+(-1+\beta _{3}-\beta _{7})q^{5}+\cdots\)
1710.2.n.g 1710.n 15.e $8$ $13.654$ 8.0.110166016.2 None 1710.2.n.f \(0\) \(0\) \(8\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}+\beta _{5}q^{4}+(1-\beta _{2}-\beta _{7})q^{5}+\cdots\)
1710.2.n.h 1710.n 15.e $16$ $13.654$ 16.0.\(\cdots\).1 None 1710.2.n.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{5}q^{2}+\beta _{9}q^{4}+(\beta _{1}-\beta _{15})q^{5}+(\beta _{4}+\cdots)q^{7}+\cdots\)
1710.2.n.i 1710.n 15.e $20$ $13.654$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 1710.2.n.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{7}q^{2}-\beta _{10}q^{4}+\beta _{14}q^{5}+\beta _{17}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1710, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1710, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(570, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(855, [\chi])\)\(^{\oplus 2}\)