Properties

Label 1710.2
Level 1710
Weight 2
Dimension 18704
Nonzero newspaces 48
Sturm bound 311040
Trace bound 17

Downloads

Learn more

Defining parameters

Level: N N = 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k = 2 2
Nonzero newspaces: 48 48
Sturm bound: 311040311040
Trace bound: 1717

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(1710))M_{2}(\Gamma_1(1710)).

Total New Old
Modular forms 80064 18704 61360
Cusp forms 75457 18704 56753
Eisenstein series 4607 0 4607

Trace form

18704q6q212q36q410q5+12q624q7+6q8+28q9+22q10+52q11+16q1220q13+4q14+48q156q16+8q1876q19+4q20++292q99+O(q100) 18704 q - 6 q^{2} - 12 q^{3} - 6 q^{4} - 10 q^{5} + 12 q^{6} - 24 q^{7} + 6 q^{8} + 28 q^{9} + 22 q^{10} + 52 q^{11} + 16 q^{12} - 20 q^{13} + 4 q^{14} + 48 q^{15} - 6 q^{16} + 8 q^{18} - 76 q^{19} + 4 q^{20}+ \cdots + 292 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(1710))S_{2}^{\mathrm{new}}(\Gamma_1(1710))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
1710.2.a χ1710(1,)\chi_{1710}(1, \cdot) 1710.2.a.a 1 1
1710.2.a.b 1
1710.2.a.c 1
1710.2.a.d 1
1710.2.a.e 1
1710.2.a.f 1
1710.2.a.g 1
1710.2.a.h 1
1710.2.a.i 1
1710.2.a.j 1
1710.2.a.k 1
1710.2.a.l 1
1710.2.a.m 1
1710.2.a.n 1
1710.2.a.o 1
1710.2.a.p 1
1710.2.a.q 1
1710.2.a.r 1
1710.2.a.s 1
1710.2.a.t 1
1710.2.a.u 2
1710.2.a.v 2
1710.2.a.w 2
1710.2.a.x 2
1710.2.a.y 2
1710.2.c χ1710(1709,)\chi_{1710}(1709, \cdot) 1710.2.c.a 4 1
1710.2.c.b 4
1710.2.c.c 8
1710.2.c.d 24
1710.2.d χ1710(1369,)\chi_{1710}(1369, \cdot) 1710.2.d.a 2 1
1710.2.d.b 2
1710.2.d.c 4
1710.2.d.d 6
1710.2.d.e 6
1710.2.d.f 6
1710.2.d.g 8
1710.2.d.h 12
1710.2.f χ1710(341,)\chi_{1710}(341, \cdot) 1710.2.f.a 16 1
1710.2.f.b 16
1710.2.i χ1710(121,)\chi_{1710}(121, \cdot) n/a 160 2
1710.2.j χ1710(571,)\chi_{1710}(571, \cdot) n/a 144 2
1710.2.k χ1710(391,)\chi_{1710}(391, \cdot) n/a 160 2
1710.2.l χ1710(1261,)\chi_{1710}(1261, \cdot) 1710.2.l.a 2 2
1710.2.l.b 2
1710.2.l.c 2
1710.2.l.d 2
1710.2.l.e 2
1710.2.l.f 2
1710.2.l.g 2
1710.2.l.h 2
1710.2.l.i 2
1710.2.l.j 4
1710.2.l.k 4
1710.2.l.l 4
1710.2.l.m 4
1710.2.l.n 4
1710.2.l.o 6
1710.2.l.p 6
1710.2.l.q 6
1710.2.l.r 8
1710.2.l.s 8
1710.2.n χ1710(647,)\chi_{1710}(647, \cdot) 1710.2.n.a 4 2
1710.2.n.b 4
1710.2.n.c 4
1710.2.n.d 4
1710.2.n.e 4
1710.2.n.f 8
1710.2.n.g 8
1710.2.n.h 16
1710.2.n.i 20
1710.2.p χ1710(37,)\chi_{1710}(37, \cdot) 1710.2.p.a 4 2
1710.2.p.b 16
1710.2.p.c 20
1710.2.p.d 20
1710.2.p.e 40
1710.2.q χ1710(179,)\chi_{1710}(179, \cdot) 1710.2.q.a 16 2
1710.2.q.b 64
1710.2.t χ1710(919,)\chi_{1710}(919, \cdot) 1710.2.t.a 8 2
1710.2.t.b 12
1710.2.t.c 20
1710.2.t.d 20
1710.2.t.e 40
1710.2.x χ1710(1361,)\chi_{1710}(1361, \cdot) n/a 160 2
1710.2.ba χ1710(911,)\chi_{1710}(911, \cdot) n/a 160 2
1710.2.bb χ1710(221,)\chi_{1710}(221, \cdot) n/a 160 2
1710.2.bd χ1710(49,)\chi_{1710}(49, \cdot) n/a 240 2
1710.2.bg χ1710(229,)\chi_{1710}(229, \cdot) n/a 216 2
1710.2.bh χ1710(619,)\chi_{1710}(619, \cdot) n/a 240 2
1710.2.bk χ1710(749,)\chi_{1710}(749, \cdot) n/a 240 2
1710.2.bl χ1710(569,)\chi_{1710}(569, \cdot) n/a 240 2
1710.2.bo χ1710(1019,)\chi_{1710}(1019, \cdot) n/a 240 2
1710.2.bq χ1710(521,)\chi_{1710}(521, \cdot) 1710.2.bq.a 32 2
1710.2.bq.b 32
1710.2.bs χ1710(271,)\chi_{1710}(271, \cdot) n/a 192 6
1710.2.bt χ1710(61,)\chi_{1710}(61, \cdot) n/a 480 6
1710.2.bu χ1710(481,)\chi_{1710}(481, \cdot) n/a 480 6
1710.2.bv χ1710(197,)\chi_{1710}(197, \cdot) n/a 160 4
1710.2.by χ1710(493,)\chi_{1710}(493, \cdot) n/a 480 4
1710.2.bz χ1710(103,)\chi_{1710}(103, \cdot) n/a 480 4
1710.2.cc χ1710(373,)\chi_{1710}(373, \cdot) n/a 480 4
1710.2.ce χ1710(77,)\chi_{1710}(77, \cdot) n/a 432 4
1710.2.cf χ1710(83,)\chi_{1710}(83, \cdot) n/a 480 4
1710.2.ci χ1710(353,)\chi_{1710}(353, \cdot) n/a 480 4
1710.2.cj χ1710(217,)\chi_{1710}(217, \cdot) n/a 200 4
1710.2.cl χ1710(139,)\chi_{1710}(139, \cdot) n/a 720 6
1710.2.co χ1710(299,)\chi_{1710}(299, \cdot) n/a 720 6
1710.2.cp χ1710(41,)\chi_{1710}(41, \cdot) n/a 480 6
1710.2.ct χ1710(71,)\chi_{1710}(71, \cdot) n/a 144 6
1710.2.cv χ1710(29,)\chi_{1710}(29, \cdot) n/a 720 6
1710.2.cx χ1710(199,)\chi_{1710}(199, \cdot) n/a 300 6
1710.2.da χ1710(89,)\chi_{1710}(89, \cdot) n/a 240 6
1710.2.dc χ1710(499,)\chi_{1710}(499, \cdot) n/a 720 6
1710.2.df χ1710(641,)\chi_{1710}(641, \cdot) n/a 480 6
1710.2.dh χ1710(47,)\chi_{1710}(47, \cdot) n/a 1440 12
1710.2.dk χ1710(13,)\chi_{1710}(13, \cdot) n/a 1440 12
1710.2.dl χ1710(127,)\chi_{1710}(127, \cdot) n/a 600 12
1710.2.dm χ1710(23,)\chi_{1710}(23, \cdot) n/a 1440 12
1710.2.dn χ1710(17,)\chi_{1710}(17, \cdot) n/a 480 12
1710.2.dq χ1710(193,)\chi_{1710}(193, \cdot) n/a 1440 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(1710))S_{2}^{\mathrm{old}}(\Gamma_1(1710)) into lower level spaces

S2old(Γ1(1710)) S_{2}^{\mathrm{old}}(\Gamma_1(1710)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))12^{\oplus 12}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))16^{\oplus 16}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))12^{\oplus 12}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))8^{\oplus 8}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))8^{\oplus 8}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))6^{\oplus 6}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))8^{\oplus 8}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))4^{\oplus 4}\oplusS2new(Γ1(19))S_{2}^{\mathrm{new}}(\Gamma_1(19))12^{\oplus 12}\oplusS2new(Γ1(30))S_{2}^{\mathrm{new}}(\Gamma_1(30))4^{\oplus 4}\oplusS2new(Γ1(38))S_{2}^{\mathrm{new}}(\Gamma_1(38))6^{\oplus 6}\oplusS2new(Γ1(45))S_{2}^{\mathrm{new}}(\Gamma_1(45))4^{\oplus 4}\oplusS2new(Γ1(57))S_{2}^{\mathrm{new}}(\Gamma_1(57))8^{\oplus 8}\oplusS2new(Γ1(90))S_{2}^{\mathrm{new}}(\Gamma_1(90))2^{\oplus 2}\oplusS2new(Γ1(95))S_{2}^{\mathrm{new}}(\Gamma_1(95))6^{\oplus 6}\oplusS2new(Γ1(114))S_{2}^{\mathrm{new}}(\Gamma_1(114))4^{\oplus 4}\oplusS2new(Γ1(171))S_{2}^{\mathrm{new}}(\Gamma_1(171))4^{\oplus 4}\oplusS2new(Γ1(190))S_{2}^{\mathrm{new}}(\Gamma_1(190))3^{\oplus 3}\oplusS2new(Γ1(285))S_{2}^{\mathrm{new}}(\Gamma_1(285))4^{\oplus 4}\oplusS2new(Γ1(342))S_{2}^{\mathrm{new}}(\Gamma_1(342))2^{\oplus 2}\oplusS2new(Γ1(570))S_{2}^{\mathrm{new}}(\Gamma_1(570))2^{\oplus 2}\oplusS2new(Γ1(855))S_{2}^{\mathrm{new}}(\Gamma_1(855))2^{\oplus 2}