Properties

Label 1710.2
Level 1710
Weight 2
Dimension 18704
Nonzero newspaces 48
Sturm bound 311040
Trace bound 17

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(311040\)
Trace bound: \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1710))\).

Total New Old
Modular forms 80064 18704 61360
Cusp forms 75457 18704 56753
Eisenstein series 4607 0 4607

Trace form

\( 18704 q - 6 q^{2} - 12 q^{3} - 6 q^{4} - 10 q^{5} + 12 q^{6} - 24 q^{7} + 6 q^{8} + 28 q^{9} + 22 q^{10} + 52 q^{11} + 16 q^{12} - 20 q^{13} + 4 q^{14} + 48 q^{15} - 6 q^{16} + 8 q^{18} - 76 q^{19} + 4 q^{20}+ \cdots + 292 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1710))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1710.2.a \(\chi_{1710}(1, \cdot)\) 1710.2.a.a 1 1
1710.2.a.b 1
1710.2.a.c 1
1710.2.a.d 1
1710.2.a.e 1
1710.2.a.f 1
1710.2.a.g 1
1710.2.a.h 1
1710.2.a.i 1
1710.2.a.j 1
1710.2.a.k 1
1710.2.a.l 1
1710.2.a.m 1
1710.2.a.n 1
1710.2.a.o 1
1710.2.a.p 1
1710.2.a.q 1
1710.2.a.r 1
1710.2.a.s 1
1710.2.a.t 1
1710.2.a.u 2
1710.2.a.v 2
1710.2.a.w 2
1710.2.a.x 2
1710.2.a.y 2
1710.2.c \(\chi_{1710}(1709, \cdot)\) 1710.2.c.a 4 1
1710.2.c.b 4
1710.2.c.c 8
1710.2.c.d 24
1710.2.d \(\chi_{1710}(1369, \cdot)\) 1710.2.d.a 2 1
1710.2.d.b 2
1710.2.d.c 4
1710.2.d.d 6
1710.2.d.e 6
1710.2.d.f 6
1710.2.d.g 8
1710.2.d.h 12
1710.2.f \(\chi_{1710}(341, \cdot)\) 1710.2.f.a 16 1
1710.2.f.b 16
1710.2.i \(\chi_{1710}(121, \cdot)\) n/a 160 2
1710.2.j \(\chi_{1710}(571, \cdot)\) n/a 144 2
1710.2.k \(\chi_{1710}(391, \cdot)\) n/a 160 2
1710.2.l \(\chi_{1710}(1261, \cdot)\) 1710.2.l.a 2 2
1710.2.l.b 2
1710.2.l.c 2
1710.2.l.d 2
1710.2.l.e 2
1710.2.l.f 2
1710.2.l.g 2
1710.2.l.h 2
1710.2.l.i 2
1710.2.l.j 4
1710.2.l.k 4
1710.2.l.l 4
1710.2.l.m 4
1710.2.l.n 4
1710.2.l.o 6
1710.2.l.p 6
1710.2.l.q 6
1710.2.l.r 8
1710.2.l.s 8
1710.2.n \(\chi_{1710}(647, \cdot)\) 1710.2.n.a 4 2
1710.2.n.b 4
1710.2.n.c 4
1710.2.n.d 4
1710.2.n.e 4
1710.2.n.f 8
1710.2.n.g 8
1710.2.n.h 16
1710.2.n.i 20
1710.2.p \(\chi_{1710}(37, \cdot)\) 1710.2.p.a 4 2
1710.2.p.b 16
1710.2.p.c 20
1710.2.p.d 20
1710.2.p.e 40
1710.2.q \(\chi_{1710}(179, \cdot)\) 1710.2.q.a 16 2
1710.2.q.b 64
1710.2.t \(\chi_{1710}(919, \cdot)\) 1710.2.t.a 8 2
1710.2.t.b 12
1710.2.t.c 20
1710.2.t.d 20
1710.2.t.e 40
1710.2.x \(\chi_{1710}(1361, \cdot)\) n/a 160 2
1710.2.ba \(\chi_{1710}(911, \cdot)\) n/a 160 2
1710.2.bb \(\chi_{1710}(221, \cdot)\) n/a 160 2
1710.2.bd \(\chi_{1710}(49, \cdot)\) n/a 240 2
1710.2.bg \(\chi_{1710}(229, \cdot)\) n/a 216 2
1710.2.bh \(\chi_{1710}(619, \cdot)\) n/a 240 2
1710.2.bk \(\chi_{1710}(749, \cdot)\) n/a 240 2
1710.2.bl \(\chi_{1710}(569, \cdot)\) n/a 240 2
1710.2.bo \(\chi_{1710}(1019, \cdot)\) n/a 240 2
1710.2.bq \(\chi_{1710}(521, \cdot)\) 1710.2.bq.a 32 2
1710.2.bq.b 32
1710.2.bs \(\chi_{1710}(271, \cdot)\) n/a 192 6
1710.2.bt \(\chi_{1710}(61, \cdot)\) n/a 480 6
1710.2.bu \(\chi_{1710}(481, \cdot)\) n/a 480 6
1710.2.bv \(\chi_{1710}(197, \cdot)\) n/a 160 4
1710.2.by \(\chi_{1710}(493, \cdot)\) n/a 480 4
1710.2.bz \(\chi_{1710}(103, \cdot)\) n/a 480 4
1710.2.cc \(\chi_{1710}(373, \cdot)\) n/a 480 4
1710.2.ce \(\chi_{1710}(77, \cdot)\) n/a 432 4
1710.2.cf \(\chi_{1710}(83, \cdot)\) n/a 480 4
1710.2.ci \(\chi_{1710}(353, \cdot)\) n/a 480 4
1710.2.cj \(\chi_{1710}(217, \cdot)\) n/a 200 4
1710.2.cl \(\chi_{1710}(139, \cdot)\) n/a 720 6
1710.2.co \(\chi_{1710}(299, \cdot)\) n/a 720 6
1710.2.cp \(\chi_{1710}(41, \cdot)\) n/a 480 6
1710.2.ct \(\chi_{1710}(71, \cdot)\) n/a 144 6
1710.2.cv \(\chi_{1710}(29, \cdot)\) n/a 720 6
1710.2.cx \(\chi_{1710}(199, \cdot)\) n/a 300 6
1710.2.da \(\chi_{1710}(89, \cdot)\) n/a 240 6
1710.2.dc \(\chi_{1710}(499, \cdot)\) n/a 720 6
1710.2.df \(\chi_{1710}(641, \cdot)\) n/a 480 6
1710.2.dh \(\chi_{1710}(47, \cdot)\) n/a 1440 12
1710.2.dk \(\chi_{1710}(13, \cdot)\) n/a 1440 12
1710.2.dl \(\chi_{1710}(127, \cdot)\) n/a 600 12
1710.2.dm \(\chi_{1710}(23, \cdot)\) n/a 1440 12
1710.2.dn \(\chi_{1710}(17, \cdot)\) n/a 480 12
1710.2.dq \(\chi_{1710}(193, \cdot)\) n/a 1440 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1710))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1710)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(114))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(171))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(190))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(285))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(342))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(570))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(855))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1710))\)\(^{\oplus 1}\)