Properties

Label 1710.dq
Modulus $1710$
Conductor $855$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,27,26]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(193,1710))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1710\)
Conductor: \(855\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 855.dq
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.17849776228866488737715206984999102954438314099226129130939288096733391284942626953125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{1710}(193,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(-1\) \(i\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{1710}(337,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(-1\) \(-i\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{1710}(547,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(-1\) \(-i\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{1710}(553,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(-1\) \(i\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{36}\right)\)
\(\chi_{1710}(583,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(-1\) \(i\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{1710}(637,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(-1\) \(-i\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{1710}(877,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(-1\) \(-i\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{1710}(1237,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(-1\) \(-i\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{1710}(1267,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(-1\) \(-i\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{1710}(1363,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(-1\) \(i\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{1710}(1573,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(-1\) \(i\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{1710}(1663,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(-1\) \(i\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{36}\right)\)