Properties

Label 1710.193
Modulus 17101710
Conductor 855855
Order 3636
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,27,26]))
 
pari: [g,chi] = znchar(Mod(193,1710))
 

Basic properties

Modulus: 17101710
Conductor: 855855
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ855(193,)\chi_{855}(193,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1710.dq

χ1710(193,)\chi_{1710}(193,\cdot) χ1710(337,)\chi_{1710}(337,\cdot) χ1710(547,)\chi_{1710}(547,\cdot) χ1710(553,)\chi_{1710}(553,\cdot) χ1710(583,)\chi_{1710}(583,\cdot) χ1710(637,)\chi_{1710}(637,\cdot) χ1710(877,)\chi_{1710}(877,\cdot) χ1710(1237,)\chi_{1710}(1237,\cdot) χ1710(1267,)\chi_{1710}(1267,\cdot) χ1710(1363,)\chi_{1710}(1363,\cdot) χ1710(1573,)\chi_{1710}(1573,\cdot) χ1710(1663,)\chi_{1710}(1663,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: 36.36.17849776228866488737715206984999102954438314099226129130939288096733391284942626953125.1

Values on generators

(191,1027,1351)(191,1027,1351)(e(13),i,e(1318))(e\left(\frac{1}{3}\right),-i,e\left(\frac{13}{18}\right))

First values

aa 1-11177111113131717232329293131373741414343
χ1710(193,a) \chi_{ 1710 }(193, a) 1111e(512)e\left(\frac{5}{12}\right)11e(1936)e\left(\frac{19}{36}\right)e(3536)e\left(\frac{35}{36}\right)e(1336)e\left(\frac{13}{36}\right)e(19)e\left(\frac{1}{9}\right)1-1iie(118)e\left(\frac{1}{18}\right)e(536)e\left(\frac{5}{36}\right)
sage: chi.jacobi_sum(n)
 
χ1710(193,a)   \chi_{ 1710 }(193,a) \; at   a=\;a = e.g. 2