L(s) = 1 | − 2·2-s + 4·4-s + 5·5-s + 22.2·7-s − 8·8-s − 10·10-s − 41.4·11-s − 40.8·13-s − 44.5·14-s + 16·16-s + 61.7·17-s + 19·19-s + 20·20-s + 82.9·22-s − 85.4·23-s + 25·25-s + 81.7·26-s + 89.1·28-s + 46.4·29-s + 196.·31-s − 32·32-s − 123.·34-s + 111.·35-s − 278.·37-s − 38·38-s − 40·40-s − 344.·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 0.447·5-s + 1.20·7-s − 0.353·8-s − 0.316·10-s − 1.13·11-s − 0.872·13-s − 0.851·14-s + 0.250·16-s + 0.881·17-s + 0.229·19-s + 0.223·20-s + 0.803·22-s − 0.774·23-s + 0.200·25-s + 0.616·26-s + 0.601·28-s + 0.297·29-s + 1.13·31-s − 0.176·32-s − 0.623·34-s + 0.538·35-s − 1.23·37-s − 0.162·38-s − 0.158·40-s − 1.31·41-s + ⋯ |
Λ(s)=(=(1710s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1710s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 3 | 1 |
| 5 | 1−5T |
| 19 | 1−19T |
good | 7 | 1−22.2T+343T2 |
| 11 | 1+41.4T+1.33e3T2 |
| 13 | 1+40.8T+2.19e3T2 |
| 17 | 1−61.7T+4.91e3T2 |
| 23 | 1+85.4T+1.21e4T2 |
| 29 | 1−46.4T+2.43e4T2 |
| 31 | 1−196.T+2.97e4T2 |
| 37 | 1+278.T+5.06e4T2 |
| 41 | 1+344.T+6.89e4T2 |
| 43 | 1−359.T+7.95e4T2 |
| 47 | 1+407.T+1.03e5T2 |
| 53 | 1+172.T+1.48e5T2 |
| 59 | 1+526.T+2.05e5T2 |
| 61 | 1−130.T+2.26e5T2 |
| 67 | 1+395.T+3.00e5T2 |
| 71 | 1+1.16e3T+3.57e5T2 |
| 73 | 1−814.T+3.89e5T2 |
| 79 | 1+229.T+4.93e5T2 |
| 83 | 1+320.T+5.71e5T2 |
| 89 | 1−1.27e3T+7.04e5T2 |
| 97 | 1+1.46e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.410098131734911788285138532899, −7.897323498164370058845847925549, −7.29606029689753142337700952453, −6.17770223496622092397089061326, −5.25141601203826296740342128421, −4.70076143429152189215957821873, −3.15631627204239547582789495389, −2.21093885036388537804670013407, −1.34413016530373120416242598234, 0,
1.34413016530373120416242598234, 2.21093885036388537804670013407, 3.15631627204239547582789495389, 4.70076143429152189215957821873, 5.25141601203826296740342128421, 6.17770223496622092397089061326, 7.29606029689753142337700952453, 7.897323498164370058845847925549, 8.410098131734911788285138532899