Properties

Label 1710.4.a.m
Level 17101710
Weight 44
Character orbit 1710.a
Self dual yes
Analytic conductor 100.893100.893
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,4,Mod(1,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1710.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 100.893266110100.893266110
Analytic rank: 11
Dimension: 22
Coefficient field: Q(106)\Q(\sqrt{106})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2106 x^{2} - 106 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 570)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=106\beta = \sqrt{106}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2q2+4q4+5q5+(β+12)q78q810q10+(5β+10)q11+(3β10)q13+(2β24)q14+16q16+6βq17+19q19+20q20++(48β+186)q98+O(q100) q - 2 q^{2} + 4 q^{4} + 5 q^{5} + (\beta + 12) q^{7} - 8 q^{8} - 10 q^{10} + ( - 5 \beta + 10) q^{11} + ( - 3 \beta - 10) q^{13} + ( - 2 \beta - 24) q^{14} + 16 q^{16} + 6 \beta q^{17} + 19 q^{19} + 20 q^{20}+ \cdots + ( - 48 \beta + 186) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q2+8q4+10q5+24q716q820q10+20q1120q1348q14+32q16+38q19+40q2040q22212q23+50q25+40q26+96q28++372q98+O(q100) 2 q - 4 q^{2} + 8 q^{4} + 10 q^{5} + 24 q^{7} - 16 q^{8} - 20 q^{10} + 20 q^{11} - 20 q^{13} - 48 q^{14} + 32 q^{16} + 38 q^{19} + 40 q^{20} - 40 q^{22} - 212 q^{23} + 50 q^{25} + 40 q^{26} + 96 q^{28}+ \cdots + 372 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−10.2956
10.2956
−2.00000 0 4.00000 5.00000 0 1.70437 −8.00000 0 −10.0000
1.2 −2.00000 0 4.00000 5.00000 0 22.2956 −8.00000 0 −10.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
55 1 -1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.4.a.m 2
3.b odd 2 1 570.4.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.4.a.n 2 3.b odd 2 1
1710.4.a.m 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1710))S_{4}^{\mathrm{new}}(\Gamma_0(1710)):

T7224T7+38 T_{7}^{2} - 24T_{7} + 38 Copy content Toggle raw display
T11220T112550 T_{11}^{2} - 20T_{11} - 2550 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T5)2 (T - 5)^{2} Copy content Toggle raw display
77 T224T+38 T^{2} - 24T + 38 Copy content Toggle raw display
1111 T220T2550 T^{2} - 20T - 2550 Copy content Toggle raw display
1313 T2+20T854 T^{2} + 20T - 854 Copy content Toggle raw display
1717 T23816 T^{2} - 3816 Copy content Toggle raw display
1919 (T19)2 (T - 19)^{2} Copy content Toggle raw display
2323 T2+212T+10812 T^{2} + 212T + 10812 Copy content Toggle raw display
2929 T2+216T12186 T^{2} + 216T - 12186 Copy content Toggle raw display
3131 T2+60T50404 T^{2} + 60T - 50404 Copy content Toggle raw display
3737 T2+84T54310 T^{2} + 84T - 54310 Copy content Toggle raw display
4141 T2+504T+54918 T^{2} + 504T + 54918 Copy content Toggle raw display
4343 T2368T+3222 T^{2} - 368T + 3222 Copy content Toggle raw display
4747 T2+444T+14940 T^{2} + 444T + 14940 Copy content Toggle raw display
5353 T2+304T+22680 T^{2} + 304T + 22680 Copy content Toggle raw display
5959 T2+1176T+341928 T^{2} + 1176 T + 341928 Copy content Toggle raw display
6161 T2344T+27888 T^{2} - 344T + 27888 Copy content Toggle raw display
6767 T232T169344 T^{2} - 32T - 169344 Copy content Toggle raw display
7171 T2+1704T+630504 T^{2} + 1704 T + 630504 Copy content Toggle raw display
7373 T21876T+864580 T^{2} - 1876 T + 864580 Copy content Toggle raw display
7979 T2+48T41824 T^{2} + 48T - 41824 Copy content Toggle raw display
8383 T2+724T+129348 T^{2} + 724T + 129348 Copy content Toggle raw display
8989 T2+184T1866570 T^{2} + 184 T - 1866570 Copy content Toggle raw display
9797 T2+1956T+722330 T^{2} + 1956 T + 722330 Copy content Toggle raw display
show more
show less