Properties

Label 2-1734-1.1-c3-0-131
Degree $2$
Conductor $1734$
Sign $-1$
Analytic cond. $102.309$
Root an. cond. $10.1148$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 4·4-s + 16.3·5-s − 6·6-s + 8.04·7-s + 8·8-s + 9·9-s + 32.7·10-s − 31.3·11-s − 12·12-s − 8.08·13-s + 16.0·14-s − 49.1·15-s + 16·16-s + 18·18-s − 106.·19-s + 65.5·20-s − 24.1·21-s − 62.7·22-s − 169.·23-s − 24·24-s + 143.·25-s − 16.1·26-s − 27·27-s + 32.1·28-s − 9.93·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.46·5-s − 0.408·6-s + 0.434·7-s + 0.353·8-s + 0.333·9-s + 1.03·10-s − 0.859·11-s − 0.288·12-s − 0.172·13-s + 0.307·14-s − 0.846·15-s + 0.250·16-s + 0.235·18-s − 1.28·19-s + 0.733·20-s − 0.250·21-s − 0.608·22-s − 1.53·23-s − 0.204·24-s + 1.15·25-s − 0.121·26-s − 0.192·27-s + 0.217·28-s − 0.0636·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1734\)    =    \(2 \cdot 3 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(102.309\)
Root analytic conductor: \(10.1148\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1734,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
3 \( 1 + 3T \)
17 \( 1 \)
good5 \( 1 - 16.3T + 125T^{2} \)
7 \( 1 - 8.04T + 343T^{2} \)
11 \( 1 + 31.3T + 1.33e3T^{2} \)
13 \( 1 + 8.08T + 2.19e3T^{2} \)
19 \( 1 + 106.T + 6.85e3T^{2} \)
23 \( 1 + 169.T + 1.21e4T^{2} \)
29 \( 1 + 9.93T + 2.43e4T^{2} \)
31 \( 1 + 300.T + 2.97e4T^{2} \)
37 \( 1 - 176.T + 5.06e4T^{2} \)
41 \( 1 + 135.T + 6.89e4T^{2} \)
43 \( 1 + 467.T + 7.95e4T^{2} \)
47 \( 1 + 491.T + 1.03e5T^{2} \)
53 \( 1 + 387.T + 1.48e5T^{2} \)
59 \( 1 + 137.T + 2.05e5T^{2} \)
61 \( 1 - 289.T + 2.26e5T^{2} \)
67 \( 1 - 52.9T + 3.00e5T^{2} \)
71 \( 1 - 1.05e3T + 3.57e5T^{2} \)
73 \( 1 - 133.T + 3.89e5T^{2} \)
79 \( 1 + 214.T + 4.93e5T^{2} \)
83 \( 1 - 438.T + 5.71e5T^{2} \)
89 \( 1 - 561.T + 7.04e5T^{2} \)
97 \( 1 - 1.30e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.472311942626855601980625681373, −7.67108581866052822397266186343, −6.52032841536281220444452548934, −6.10414858982690356604737747916, −5.24466045562250212386225913280, −4.75863958671843700939517731099, −3.52868682978853037212423394725, −2.15721843611367683405314813463, −1.77405402366620688952273844163, 0, 1.77405402366620688952273844163, 2.15721843611367683405314813463, 3.52868682978853037212423394725, 4.75863958671843700939517731099, 5.24466045562250212386225913280, 6.10414858982690356604737747916, 6.52032841536281220444452548934, 7.67108581866052822397266186343, 8.472311942626855601980625681373

Graph of the $Z$-function along the critical line