Properties

Label 1734.4.a.x
Level $1734$
Weight $4$
Character orbit 1734.a
Self dual yes
Analytic conductor $102.309$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,4,Mod(1,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1734.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.309311950\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} - 3 q^{3} + 4 q^{4} + (5 \beta_1 + 7) q^{5} - 6 q^{6} + ( - 3 \beta_{2} + 3 \beta_1 + 7) q^{7} + 8 q^{8} + 9 q^{9} + (10 \beta_1 + 14) q^{10} + (11 \beta_{2} - 23 \beta_1 - 5) q^{11} - 12 q^{12}+ \cdots + (99 \beta_{2} - 207 \beta_1 - 45) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} - 9 q^{3} + 12 q^{4} + 21 q^{5} - 18 q^{6} + 21 q^{7} + 24 q^{8} + 27 q^{9} + 42 q^{10} - 15 q^{11} - 36 q^{12} - 75 q^{13} + 42 q^{14} - 63 q^{15} + 48 q^{16} + 54 q^{18} - 141 q^{19} + 84 q^{20}+ \cdots - 135 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.53209
−0.347296
1.87939
2.00000 −3.00000 4.00000 −0.660444 −6.00000 1.36184 8.00000 9.00000 −1.32089
1.2 2.00000 −3.00000 4.00000 5.26352 −6.00000 11.5963 8.00000 9.00000 10.5270
1.3 2.00000 −3.00000 4.00000 16.3969 −6.00000 8.04189 8.00000 9.00000 32.7939
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1734.4.a.x 3
17.b even 2 1 1734.4.a.y yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1734.4.a.x 3 1.a even 1 1 trivial
1734.4.a.y yes 3 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1734))\):

\( T_{5}^{3} - 21T_{5}^{2} + 72T_{5} + 57 \) Copy content Toggle raw display
\( T_{7}^{3} - 21T_{7}^{2} + 120T_{7} - 127 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 21 T^{2} + \cdots + 57 \) Copy content Toggle raw display
$7$ \( T^{3} - 21 T^{2} + \cdots - 127 \) Copy content Toggle raw display
$11$ \( T^{3} + 15 T^{2} + \cdots - 18897 \) Copy content Toggle raw display
$13$ \( T^{3} + 75 T^{2} + \cdots + 8821 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 141 T^{2} + \cdots + 31429 \) Copy content Toggle raw display
$23$ \( T^{3} + 321 T^{2} + \cdots + 616521 \) Copy content Toggle raw display
$29$ \( T^{3} + 102 T^{2} + \cdots - 73929 \) Copy content Toggle raw display
$31$ \( T^{3} + 18 T^{2} + \cdots + 5387237 \) Copy content Toggle raw display
$37$ \( T^{3} - 105 T^{2} + \cdots + 3029597 \) Copy content Toggle raw display
$41$ \( T^{3} + 162 T^{2} + \cdots - 554013 \) Copy content Toggle raw display
$43$ \( T^{3} + 756 T^{2} + \cdots - 4807304 \) Copy content Toggle raw display
$47$ \( T^{3} + 1014 T^{2} + \cdots + 18924303 \) Copy content Toggle raw display
$53$ \( T^{3} + 624 T^{2} + \cdots - 37965621 \) Copy content Toggle raw display
$59$ \( T^{3} - 51 T^{2} + \cdots - 6837483 \) Copy content Toggle raw display
$61$ \( T^{3} - 1029 T^{2} + \cdots - 25408333 \) Copy content Toggle raw display
$67$ \( T^{3} + 330 T^{2} + \cdots - 1726568 \) Copy content Toggle raw display
$71$ \( T^{3} - 819 T^{2} + \cdots - 12110301 \) Copy content Toggle raw display
$73$ \( T^{3} - 1173 T^{2} + \cdots - 35919811 \) Copy content Toggle raw display
$79$ \( T^{3} - 417 T^{2} + \cdots + 18703457 \) Copy content Toggle raw display
$83$ \( T^{3} + 186 T^{2} + \cdots + 244365879 \) Copy content Toggle raw display
$89$ \( T^{3} + 768 T^{2} + \cdots - 211092213 \) Copy content Toggle raw display
$97$ \( T^{3} + 213 T^{2} + \cdots - 471554029 \) Copy content Toggle raw display
show more
show less