L(s) = 1 | + (−1.22 + 1.22i)3-s + 2.23i·5-s + 4.92·7-s − 2.99i·9-s + (−4.50 + 4.50i)11-s + 2.37i·13-s + (−2.73 − 2.73i)15-s + (9.67 − 9.67i)17-s + (3.07 − 3.07i)19-s + (−6.02 + 6.02i)21-s + 20.3·23-s − 5.00·25-s + (3.67 + 3.67i)27-s + (−4.95 − 28.5i)29-s + (31.2 − 31.2i)31-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + 0.447i·5-s + 0.702·7-s − 0.333i·9-s + (−0.409 + 0.409i)11-s + 0.183i·13-s + (−0.182 − 0.182i)15-s + (0.569 − 0.569i)17-s + (0.161 − 0.161i)19-s + (−0.286 + 0.286i)21-s + 0.885·23-s − 0.200·25-s + (0.136 + 0.136i)27-s + (−0.170 − 0.985i)29-s + (1.00 − 1.00i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.720 - 0.693i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.720 - 0.693i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.887097734\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.887097734\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.22 - 1.22i)T \) |
| 5 | \( 1 - 2.23iT \) |
| 29 | \( 1 + (4.95 + 28.5i)T \) |
good | 7 | \( 1 - 4.92T + 49T^{2} \) |
| 11 | \( 1 + (4.50 - 4.50i)T - 121iT^{2} \) |
| 13 | \( 1 - 2.37iT - 169T^{2} \) |
| 17 | \( 1 + (-9.67 + 9.67i)T - 289iT^{2} \) |
| 19 | \( 1 + (-3.07 + 3.07i)T - 361iT^{2} \) |
| 23 | \( 1 - 20.3T + 529T^{2} \) |
| 31 | \( 1 + (-31.2 + 31.2i)T - 961iT^{2} \) |
| 37 | \( 1 + (-5.24 - 5.24i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-47.2 - 47.2i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 + (51.9 - 51.9i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (4.56 + 4.56i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 - 17.4T + 2.80e3T^{2} \) |
| 59 | \( 1 - 60.6T + 3.48e3T^{2} \) |
| 61 | \( 1 + (-77.4 + 77.4i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 - 24.2iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 63.5iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (32.9 + 32.9i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (-24.8 + 24.8i)T - 6.24e3iT^{2} \) |
| 83 | \( 1 - 79.9T + 6.88e3T^{2} \) |
| 89 | \( 1 + (63.0 - 63.0i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + (47.9 + 47.9i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.590995726245984946870039526799, −8.277717178201367736287630702839, −7.71602186350652925358705906325, −6.79816511080163856551369280481, −5.97584734537615331559280638660, −5.00106058755262184016067999818, −4.46411479059993638615727040759, −3.26223059846540202122628263232, −2.27193640175100850975630608511, −0.849052439393846156991305048602,
0.75327863446040522808491353251, 1.68102380095239282873275377723, 2.95891538900941435914797183812, 4.10729107553766335825124323428, 5.25526476278162915284799781140, 5.50115528426185268786962762761, 6.71602923441597617264191430564, 7.43884468939588644810343242426, 8.363116187115591691593620802943, 8.714189049447911516546057788216