Properties

Label 1740.3.bl.a.481.14
Level $1740$
Weight $3$
Character 1740.481
Analytic conductor $47.412$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1740,3,Mod(481,1740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1740, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1740.481");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1740.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.4115659987\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 481.14
Character \(\chi\) \(=\) 1740.481
Dual form 1740.3.bl.a.1201.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 1.22474i) q^{3} +2.23607i q^{5} +4.92030 q^{7} -3.00000i q^{9} +(-4.50909 + 4.50909i) q^{11} +2.37920i q^{13} +(-2.73861 - 2.73861i) q^{15} +(9.67426 - 9.67426i) q^{17} +(3.07195 - 3.07195i) q^{19} +(-6.02611 + 6.02611i) q^{21} +20.3604 q^{23} -5.00000 q^{25} +(3.67423 + 3.67423i) q^{27} +(-4.95885 - 28.5729i) q^{29} +(31.2749 - 31.2749i) q^{31} -11.0450i q^{33} +11.0021i q^{35} +(5.24068 + 5.24068i) q^{37} +(-2.91392 - 2.91392i) q^{39} +(47.2943 + 47.2943i) q^{41} +(-51.9205 + 51.9205i) q^{43} +6.70820 q^{45} +(-4.56954 - 4.56954i) q^{47} -24.7907 q^{49} +23.6970i q^{51} +17.4977 q^{53} +(-10.0826 - 10.0826i) q^{55} +7.52470i q^{57} +60.6038 q^{59} +(77.4847 - 77.4847i) q^{61} -14.7609i q^{63} -5.32006 q^{65} +24.2525i q^{67} +(-24.9362 + 24.9362i) q^{69} -63.5896i q^{71} +(-32.9786 - 32.9786i) q^{73} +(6.12372 - 6.12372i) q^{75} +(-22.1861 + 22.1861i) q^{77} +(24.8475 - 24.8475i) q^{79} -9.00000 q^{81} +79.9020 q^{83} +(21.6323 + 21.6323i) q^{85} +(41.0678 + 28.9212i) q^{87} +(-63.0239 + 63.0239i) q^{89} +11.7064i q^{91} +76.6077i q^{93} +(6.86908 + 6.86908i) q^{95} +(-47.9182 - 47.9182i) q^{97} +(13.5273 + 13.5273i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 56 q^{17} + 24 q^{19} + 144 q^{23} - 400 q^{25} - 64 q^{29} - 128 q^{31} - 48 q^{37} + 48 q^{39} + 56 q^{41} - 88 q^{43} - 56 q^{47} + 448 q^{49} - 64 q^{53} - 80 q^{55} - 16 q^{59} + 248 q^{61}+ \cdots - 312 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1740\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(697\) \(871\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.22474 + 1.22474i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 4.92030 0.702900 0.351450 0.936207i \(-0.385689\pi\)
0.351450 + 0.936207i \(0.385689\pi\)
\(8\) 0 0
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) −4.50909 + 4.50909i −0.409917 + 0.409917i −0.881710 0.471792i \(-0.843607\pi\)
0.471792 + 0.881710i \(0.343607\pi\)
\(12\) 0 0
\(13\) 2.37920i 0.183016i 0.995804 + 0.0915078i \(0.0291686\pi\)
−0.995804 + 0.0915078i \(0.970831\pi\)
\(14\) 0 0
\(15\) −2.73861 2.73861i −0.182574 0.182574i
\(16\) 0 0
\(17\) 9.67426 9.67426i 0.569074 0.569074i −0.362795 0.931869i \(-0.618177\pi\)
0.931869 + 0.362795i \(0.118177\pi\)
\(18\) 0 0
\(19\) 3.07195 3.07195i 0.161681 0.161681i −0.621630 0.783311i \(-0.713529\pi\)
0.783311 + 0.621630i \(0.213529\pi\)
\(20\) 0 0
\(21\) −6.02611 + 6.02611i −0.286958 + 0.286958i
\(22\) 0 0
\(23\) 20.3604 0.885233 0.442617 0.896711i \(-0.354050\pi\)
0.442617 + 0.896711i \(0.354050\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) −4.95885 28.5729i −0.170995 0.985272i
\(30\) 0 0
\(31\) 31.2749 31.2749i 1.00887 1.00887i 0.00890884 0.999960i \(-0.497164\pi\)
0.999960 0.00890884i \(-0.00283581\pi\)
\(32\) 0 0
\(33\) 11.0450i 0.334696i
\(34\) 0 0
\(35\) 11.0021i 0.314346i
\(36\) 0 0
\(37\) 5.24068 + 5.24068i 0.141640 + 0.141640i 0.774371 0.632731i \(-0.218066\pi\)
−0.632731 + 0.774371i \(0.718066\pi\)
\(38\) 0 0
\(39\) −2.91392 2.91392i −0.0747158 0.0747158i
\(40\) 0 0
\(41\) 47.2943 + 47.2943i 1.15352 + 1.15352i 0.985842 + 0.167677i \(0.0536264\pi\)
0.167677 + 0.985842i \(0.446374\pi\)
\(42\) 0 0
\(43\) −51.9205 + 51.9205i −1.20745 + 1.20745i −0.235606 + 0.971849i \(0.575707\pi\)
−0.971849 + 0.235606i \(0.924293\pi\)
\(44\) 0 0
\(45\) 6.70820 0.149071
\(46\) 0 0
\(47\) −4.56954 4.56954i −0.0972242 0.0972242i 0.656822 0.754046i \(-0.271900\pi\)
−0.754046 + 0.656822i \(0.771900\pi\)
\(48\) 0 0
\(49\) −24.7907 −0.505932
\(50\) 0 0
\(51\) 23.6970i 0.464647i
\(52\) 0 0
\(53\) 17.4977 0.330145 0.165072 0.986281i \(-0.447214\pi\)
0.165072 + 0.986281i \(0.447214\pi\)
\(54\) 0 0
\(55\) −10.0826 10.0826i −0.183321 0.183321i
\(56\) 0 0
\(57\) 7.52470i 0.132012i
\(58\) 0 0
\(59\) 60.6038 1.02718 0.513592 0.858035i \(-0.328315\pi\)
0.513592 + 0.858035i \(0.328315\pi\)
\(60\) 0 0
\(61\) 77.4847 77.4847i 1.27024 1.27024i 0.324280 0.945961i \(-0.394878\pi\)
0.945961 0.324280i \(-0.105122\pi\)
\(62\) 0 0
\(63\) 14.7609i 0.234300i
\(64\) 0 0
\(65\) −5.32006 −0.0818470
\(66\) 0 0
\(67\) 24.2525i 0.361977i 0.983485 + 0.180989i \(0.0579297\pi\)
−0.983485 + 0.180989i \(0.942070\pi\)
\(68\) 0 0
\(69\) −24.9362 + 24.9362i −0.361395 + 0.361395i
\(70\) 0 0
\(71\) 63.5896i 0.895628i −0.894127 0.447814i \(-0.852203\pi\)
0.894127 0.447814i \(-0.147797\pi\)
\(72\) 0 0
\(73\) −32.9786 32.9786i −0.451762 0.451762i 0.444177 0.895939i \(-0.353496\pi\)
−0.895939 + 0.444177i \(0.853496\pi\)
\(74\) 0 0
\(75\) 6.12372 6.12372i 0.0816497 0.0816497i
\(76\) 0 0
\(77\) −22.1861 + 22.1861i −0.288131 + 0.288131i
\(78\) 0 0
\(79\) 24.8475 24.8475i 0.314525 0.314525i −0.532135 0.846660i \(-0.678610\pi\)
0.846660 + 0.532135i \(0.178610\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 0 0
\(83\) 79.9020 0.962675 0.481337 0.876535i \(-0.340151\pi\)
0.481337 + 0.876535i \(0.340151\pi\)
\(84\) 0 0
\(85\) 21.6323 + 21.6323i 0.254498 + 0.254498i
\(86\) 0 0
\(87\) 41.0678 + 28.9212i 0.472044 + 0.332427i
\(88\) 0 0
\(89\) −63.0239 + 63.0239i −0.708134 + 0.708134i −0.966143 0.258009i \(-0.916934\pi\)
0.258009 + 0.966143i \(0.416934\pi\)
\(90\) 0 0
\(91\) 11.7064i 0.128642i
\(92\) 0 0
\(93\) 76.6077i 0.823738i
\(94\) 0 0
\(95\) 6.86908 + 6.86908i 0.0723062 + 0.0723062i
\(96\) 0 0
\(97\) −47.9182 47.9182i −0.494002 0.494002i 0.415563 0.909565i \(-0.363585\pi\)
−0.909565 + 0.415563i \(0.863585\pi\)
\(98\) 0 0
\(99\) 13.5273 + 13.5273i 0.136639 + 0.136639i
\(100\) 0 0
\(101\) −52.0598 + 52.0598i −0.515443 + 0.515443i −0.916189 0.400746i \(-0.868751\pi\)
0.400746 + 0.916189i \(0.368751\pi\)
\(102\) 0 0
\(103\) −104.648 −1.01600 −0.508002 0.861356i \(-0.669616\pi\)
−0.508002 + 0.861356i \(0.669616\pi\)
\(104\) 0 0
\(105\) −13.4748 13.4748i −0.128331 0.128331i
\(106\) 0 0
\(107\) 131.814 1.23191 0.615953 0.787783i \(-0.288771\pi\)
0.615953 + 0.787783i \(0.288771\pi\)
\(108\) 0 0
\(109\) 88.8610i 0.815239i 0.913152 + 0.407619i \(0.133641\pi\)
−0.913152 + 0.407619i \(0.866359\pi\)
\(110\) 0 0
\(111\) −12.8370 −0.115649
\(112\) 0 0
\(113\) 80.6690 + 80.6690i 0.713885 + 0.713885i 0.967346 0.253461i \(-0.0815688\pi\)
−0.253461 + 0.967346i \(0.581569\pi\)
\(114\) 0 0
\(115\) 45.5272i 0.395888i
\(116\) 0 0
\(117\) 7.13761 0.0610052
\(118\) 0 0
\(119\) 47.6002 47.6002i 0.400002 0.400002i
\(120\) 0 0
\(121\) 80.3362i 0.663935i
\(122\) 0 0
\(123\) −115.847 −0.941844
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 117.138 117.138i 0.922350 0.922350i −0.0748454 0.997195i \(-0.523846\pi\)
0.997195 + 0.0748454i \(0.0238463\pi\)
\(128\) 0 0
\(129\) 127.179i 0.985883i
\(130\) 0 0
\(131\) 138.116 + 138.116i 1.05432 + 1.05432i 0.998437 + 0.0558855i \(0.0177982\pi\)
0.0558855 + 0.998437i \(0.482202\pi\)
\(132\) 0 0
\(133\) 15.1149 15.1149i 0.113646 0.113646i
\(134\) 0 0
\(135\) −8.21584 + 8.21584i −0.0608581 + 0.0608581i
\(136\) 0 0
\(137\) 82.3268 82.3268i 0.600926 0.600926i −0.339632 0.940558i \(-0.610303\pi\)
0.940558 + 0.339632i \(0.110303\pi\)
\(138\) 0 0
\(139\) −173.281 −1.24662 −0.623312 0.781974i \(-0.714213\pi\)
−0.623312 + 0.781974i \(0.714213\pi\)
\(140\) 0 0
\(141\) 11.1930 0.0793832
\(142\) 0 0
\(143\) −10.7280 10.7280i −0.0750213 0.0750213i
\(144\) 0 0
\(145\) 63.8909 11.0883i 0.440627 0.0764712i
\(146\) 0 0
\(147\) 30.3622 30.3622i 0.206546 0.206546i
\(148\) 0 0
\(149\) 202.897i 1.36173i 0.732411 + 0.680863i \(0.238395\pi\)
−0.732411 + 0.680863i \(0.761605\pi\)
\(150\) 0 0
\(151\) 109.215i 0.723278i 0.932318 + 0.361639i \(0.117783\pi\)
−0.932318 + 0.361639i \(0.882217\pi\)
\(152\) 0 0
\(153\) −29.0228 29.0228i −0.189691 0.189691i
\(154\) 0 0
\(155\) 69.9329 + 69.9329i 0.451180 + 0.451180i
\(156\) 0 0
\(157\) 210.737 + 210.737i 1.34228 + 1.34228i 0.893789 + 0.448488i \(0.148037\pi\)
0.448488 + 0.893789i \(0.351963\pi\)
\(158\) 0 0
\(159\) −21.4302 + 21.4302i −0.134781 + 0.134781i
\(160\) 0 0
\(161\) 100.179 0.622230
\(162\) 0 0
\(163\) 226.000 + 226.000i 1.38651 + 1.38651i 0.832538 + 0.553967i \(0.186887\pi\)
0.553967 + 0.832538i \(0.313113\pi\)
\(164\) 0 0
\(165\) 24.6973 0.149681
\(166\) 0 0
\(167\) 29.6838i 0.177747i 0.996043 + 0.0888736i \(0.0283267\pi\)
−0.996043 + 0.0888736i \(0.971673\pi\)
\(168\) 0 0
\(169\) 163.339 0.966505
\(170\) 0 0
\(171\) −9.21584 9.21584i −0.0538938 0.0538938i
\(172\) 0 0
\(173\) 84.1834i 0.486609i 0.969950 + 0.243305i \(0.0782315\pi\)
−0.969950 + 0.243305i \(0.921769\pi\)
\(174\) 0 0
\(175\) −24.6015 −0.140580
\(176\) 0 0
\(177\) −74.2242 + 74.2242i −0.419346 + 0.419346i
\(178\) 0 0
\(179\) 15.5114i 0.0866560i −0.999061 0.0433280i \(-0.986204\pi\)
0.999061 0.0433280i \(-0.0137960\pi\)
\(180\) 0 0
\(181\) −266.702 −1.47349 −0.736745 0.676171i \(-0.763638\pi\)
−0.736745 + 0.676171i \(0.763638\pi\)
\(182\) 0 0
\(183\) 189.798i 1.03715i
\(184\) 0 0
\(185\) −11.7185 + 11.7185i −0.0633434 + 0.0633434i
\(186\) 0 0
\(187\) 87.2443i 0.466547i
\(188\) 0 0
\(189\) 18.0783 + 18.0783i 0.0956526 + 0.0956526i
\(190\) 0 0
\(191\) −246.554 + 246.554i −1.29086 + 1.29086i −0.356601 + 0.934257i \(0.616064\pi\)
−0.934257 + 0.356601i \(0.883936\pi\)
\(192\) 0 0
\(193\) −45.3461 + 45.3461i −0.234954 + 0.234954i −0.814757 0.579803i \(-0.803130\pi\)
0.579803 + 0.814757i \(0.303130\pi\)
\(194\) 0 0
\(195\) 6.51571 6.51571i 0.0334139 0.0334139i
\(196\) 0 0
\(197\) 170.640 0.866194 0.433097 0.901347i \(-0.357421\pi\)
0.433097 + 0.901347i \(0.357421\pi\)
\(198\) 0 0
\(199\) 151.175 0.759675 0.379837 0.925053i \(-0.375980\pi\)
0.379837 + 0.925053i \(0.375980\pi\)
\(200\) 0 0
\(201\) −29.7031 29.7031i −0.147777 0.147777i
\(202\) 0 0
\(203\) −24.3990 140.587i −0.120192 0.692548i
\(204\) 0 0
\(205\) −105.753 + 105.753i −0.515869 + 0.515869i
\(206\) 0 0
\(207\) 61.0811i 0.295078i
\(208\) 0 0
\(209\) 27.7034i 0.132552i
\(210\) 0 0
\(211\) 45.9441 + 45.9441i 0.217745 + 0.217745i 0.807547 0.589803i \(-0.200795\pi\)
−0.589803 + 0.807547i \(0.700795\pi\)
\(212\) 0 0
\(213\) 77.8810 + 77.8810i 0.365639 + 0.365639i
\(214\) 0 0
\(215\) −116.098 116.098i −0.539990 0.539990i
\(216\) 0 0
\(217\) 153.882 153.882i 0.709134 0.709134i
\(218\) 0 0
\(219\) 80.7807 0.368862
\(220\) 0 0
\(221\) 23.0170 + 23.0170i 0.104149 + 0.104149i
\(222\) 0 0
\(223\) 294.316 1.31980 0.659900 0.751353i \(-0.270598\pi\)
0.659900 + 0.751353i \(0.270598\pi\)
\(224\) 0 0
\(225\) 15.0000i 0.0666667i
\(226\) 0 0
\(227\) 60.0133 0.264376 0.132188 0.991225i \(-0.457800\pi\)
0.132188 + 0.991225i \(0.457800\pi\)
\(228\) 0 0
\(229\) −9.15393 9.15393i −0.0399735 0.0399735i 0.686837 0.726811i \(-0.258998\pi\)
−0.726811 + 0.686837i \(0.758998\pi\)
\(230\) 0 0
\(231\) 54.3446i 0.235258i
\(232\) 0 0
\(233\) 44.6616 0.191681 0.0958403 0.995397i \(-0.469446\pi\)
0.0958403 + 0.995397i \(0.469446\pi\)
\(234\) 0 0
\(235\) 10.2178 10.2178i 0.0434800 0.0434800i
\(236\) 0 0
\(237\) 60.8636i 0.256808i
\(238\) 0 0
\(239\) 296.259 1.23958 0.619788 0.784769i \(-0.287219\pi\)
0.619788 + 0.784769i \(0.287219\pi\)
\(240\) 0 0
\(241\) 8.66869i 0.0359697i −0.999838 0.0179848i \(-0.994275\pi\)
0.999838 0.0179848i \(-0.00572506\pi\)
\(242\) 0 0
\(243\) 11.0227 11.0227i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) 55.4336i 0.226260i
\(246\) 0 0
\(247\) 7.30878 + 7.30878i 0.0295902 + 0.0295902i
\(248\) 0 0
\(249\) −97.8596 + 97.8596i −0.393010 + 0.393010i
\(250\) 0 0
\(251\) 93.3466 93.3466i 0.371899 0.371899i −0.496270 0.868168i \(-0.665297\pi\)
0.868168 + 0.496270i \(0.165297\pi\)
\(252\) 0 0
\(253\) −91.8067 + 91.8067i −0.362873 + 0.362873i
\(254\) 0 0
\(255\) −52.9881 −0.207796
\(256\) 0 0
\(257\) 292.353 1.13756 0.568780 0.822490i \(-0.307416\pi\)
0.568780 + 0.822490i \(0.307416\pi\)
\(258\) 0 0
\(259\) 25.7857 + 25.7857i 0.0995588 + 0.0995588i
\(260\) 0 0
\(261\) −85.7187 + 14.8765i −0.328424 + 0.0569983i
\(262\) 0 0
\(263\) 212.322 212.322i 0.807306 0.807306i −0.176919 0.984225i \(-0.556613\pi\)
0.984225 + 0.176919i \(0.0566131\pi\)
\(264\) 0 0
\(265\) 39.1260i 0.147645i
\(266\) 0 0
\(267\) 154.376i 0.578189i
\(268\) 0 0
\(269\) −234.025 234.025i −0.869982 0.869982i 0.122488 0.992470i \(-0.460913\pi\)
−0.992470 + 0.122488i \(0.960913\pi\)
\(270\) 0 0
\(271\) −234.006 234.006i −0.863491 0.863491i 0.128251 0.991742i \(-0.459064\pi\)
−0.991742 + 0.128251i \(0.959064\pi\)
\(272\) 0 0
\(273\) −14.3373 14.3373i −0.0525177 0.0525177i
\(274\) 0 0
\(275\) 22.5455 22.5455i 0.0819835 0.0819835i
\(276\) 0 0
\(277\) −293.821 −1.06073 −0.530364 0.847770i \(-0.677945\pi\)
−0.530364 + 0.847770i \(0.677945\pi\)
\(278\) 0 0
\(279\) −93.8248 93.8248i −0.336290 0.336290i
\(280\) 0 0
\(281\) 89.8185 0.319639 0.159819 0.987146i \(-0.448909\pi\)
0.159819 + 0.987146i \(0.448909\pi\)
\(282\) 0 0
\(283\) 520.527i 1.83932i −0.392717 0.919659i \(-0.628465\pi\)
0.392717 0.919659i \(-0.371535\pi\)
\(284\) 0 0
\(285\) −16.8258 −0.0590377
\(286\) 0 0
\(287\) 232.702 + 232.702i 0.810808 + 0.810808i
\(288\) 0 0
\(289\) 101.817i 0.352309i
\(290\) 0 0
\(291\) 117.375 0.403351
\(292\) 0 0
\(293\) −145.401 + 145.401i −0.496248 + 0.496248i −0.910268 0.414020i \(-0.864124\pi\)
0.414020 + 0.910268i \(0.364124\pi\)
\(294\) 0 0
\(295\) 135.514i 0.459370i
\(296\) 0 0
\(297\) −33.1349 −0.111565
\(298\) 0 0
\(299\) 48.4414i 0.162011i
\(300\) 0 0
\(301\) −255.465 + 255.465i −0.848720 + 0.848720i
\(302\) 0 0
\(303\) 127.520i 0.420858i
\(304\) 0 0
\(305\) 173.261 + 173.261i 0.568069 + 0.568069i
\(306\) 0 0
\(307\) 79.7749 79.7749i 0.259853 0.259853i −0.565141 0.824994i \(-0.691178\pi\)
0.824994 + 0.565141i \(0.191178\pi\)
\(308\) 0 0
\(309\) 128.168 128.168i 0.414782 0.414782i
\(310\) 0 0
\(311\) 46.8626 46.8626i 0.150684 0.150684i −0.627740 0.778423i \(-0.716020\pi\)
0.778423 + 0.627740i \(0.216020\pi\)
\(312\) 0 0
\(313\) −463.099 −1.47955 −0.739775 0.672854i \(-0.765068\pi\)
−0.739775 + 0.672854i \(0.765068\pi\)
\(314\) 0 0
\(315\) 33.0064 0.104782
\(316\) 0 0
\(317\) 179.937 + 179.937i 0.567624 + 0.567624i 0.931462 0.363838i \(-0.118534\pi\)
−0.363838 + 0.931462i \(0.618534\pi\)
\(318\) 0 0
\(319\) 151.198 + 106.478i 0.473974 + 0.333786i
\(320\) 0 0
\(321\) −161.438 + 161.438i −0.502923 + 0.502923i
\(322\) 0 0
\(323\) 59.4376i 0.184017i
\(324\) 0 0
\(325\) 11.8960i 0.0366031i
\(326\) 0 0
\(327\) −108.832 108.832i −0.332820 0.332820i
\(328\) 0 0
\(329\) −22.4835 22.4835i −0.0683389 0.0683389i
\(330\) 0 0
\(331\) 172.849 + 172.849i 0.522203 + 0.522203i 0.918236 0.396033i \(-0.129614\pi\)
−0.396033 + 0.918236i \(0.629614\pi\)
\(332\) 0 0
\(333\) 15.7220 15.7220i 0.0472134 0.0472134i
\(334\) 0 0
\(335\) −54.2302 −0.161881
\(336\) 0 0
\(337\) −330.702 330.702i −0.981312 0.981312i 0.0185162 0.999829i \(-0.494106\pi\)
−0.999829 + 0.0185162i \(0.994106\pi\)
\(338\) 0 0
\(339\) −197.598 −0.582885
\(340\) 0 0
\(341\) 282.043i 0.827106i
\(342\) 0 0
\(343\) −363.072 −1.05852
\(344\) 0 0
\(345\) −55.7591 55.7591i −0.161621 0.161621i
\(346\) 0 0
\(347\) 260.678i 0.751233i −0.926775 0.375617i \(-0.877431\pi\)
0.926775 0.375617i \(-0.122569\pi\)
\(348\) 0 0
\(349\) −400.297 −1.14698 −0.573491 0.819212i \(-0.694411\pi\)
−0.573491 + 0.819212i \(0.694411\pi\)
\(350\) 0 0
\(351\) −8.74175 + 8.74175i −0.0249053 + 0.0249053i
\(352\) 0 0
\(353\) 175.144i 0.496159i 0.968740 + 0.248080i \(0.0797994\pi\)
−0.968740 + 0.248080i \(0.920201\pi\)
\(354\) 0 0
\(355\) 142.191 0.400537
\(356\) 0 0
\(357\) 116.596i 0.326600i
\(358\) 0 0
\(359\) 474.271 474.271i 1.32109 1.32109i 0.408196 0.912894i \(-0.366158\pi\)
0.912894 0.408196i \(-0.133842\pi\)
\(360\) 0 0
\(361\) 342.126i 0.947718i
\(362\) 0 0
\(363\) −98.3913 98.3913i −0.271050 0.271050i
\(364\) 0 0
\(365\) 73.7424 73.7424i 0.202034 0.202034i
\(366\) 0 0
\(367\) 333.007 333.007i 0.907377 0.907377i −0.0886830 0.996060i \(-0.528266\pi\)
0.996060 + 0.0886830i \(0.0282658\pi\)
\(368\) 0 0
\(369\) 141.883 141.883i 0.384506 0.384506i
\(370\) 0 0
\(371\) 86.0938 0.232059
\(372\) 0 0
\(373\) 192.387 0.515782 0.257891 0.966174i \(-0.416972\pi\)
0.257891 + 0.966174i \(0.416972\pi\)
\(374\) 0 0
\(375\) 13.6931 + 13.6931i 0.0365148 + 0.0365148i
\(376\) 0 0
\(377\) 67.9807 11.7981i 0.180320 0.0312947i
\(378\) 0 0
\(379\) −485.470 + 485.470i −1.28092 + 1.28092i −0.340783 + 0.940142i \(0.610692\pi\)
−0.940142 + 0.340783i \(0.889308\pi\)
\(380\) 0 0
\(381\) 286.929i 0.753095i
\(382\) 0 0
\(383\) 527.240i 1.37661i −0.725424 0.688303i \(-0.758356\pi\)
0.725424 0.688303i \(-0.241644\pi\)
\(384\) 0 0
\(385\) −49.6096 49.6096i −0.128856 0.128856i
\(386\) 0 0
\(387\) 155.762 + 155.762i 0.402485 + 0.402485i
\(388\) 0 0
\(389\) −476.398 476.398i −1.22467 1.22467i −0.965952 0.258720i \(-0.916699\pi\)
−0.258720 0.965952i \(-0.583301\pi\)
\(390\) 0 0
\(391\) 196.971 196.971i 0.503763 0.503763i
\(392\) 0 0
\(393\) −338.314 −0.860851
\(394\) 0 0
\(395\) 55.5606 + 55.5606i 0.140660 + 0.140660i
\(396\) 0 0
\(397\) 65.9474 0.166114 0.0830572 0.996545i \(-0.473532\pi\)
0.0830572 + 0.996545i \(0.473532\pi\)
\(398\) 0 0
\(399\) 37.0238i 0.0927915i
\(400\) 0 0
\(401\) −713.760 −1.77995 −0.889975 0.456010i \(-0.849278\pi\)
−0.889975 + 0.456010i \(0.849278\pi\)
\(402\) 0 0
\(403\) 74.4094 + 74.4094i 0.184639 + 0.184639i
\(404\) 0 0
\(405\) 20.1246i 0.0496904i
\(406\) 0 0
\(407\) −47.2614 −0.116121
\(408\) 0 0
\(409\) −18.6013 + 18.6013i −0.0454798 + 0.0454798i −0.729481 0.684001i \(-0.760238\pi\)
0.684001 + 0.729481i \(0.260238\pi\)
\(410\) 0 0
\(411\) 201.659i 0.490654i
\(412\) 0 0
\(413\) 298.189 0.722007
\(414\) 0 0
\(415\) 178.666i 0.430521i
\(416\) 0 0
\(417\) 212.225 212.225i 0.508932 0.508932i
\(418\) 0 0
\(419\) 743.747i 1.77505i 0.460756 + 0.887527i \(0.347578\pi\)
−0.460756 + 0.887527i \(0.652422\pi\)
\(420\) 0 0
\(421\) −379.300 379.300i −0.900951 0.900951i 0.0945677 0.995518i \(-0.469853\pi\)
−0.995518 + 0.0945677i \(0.969853\pi\)
\(422\) 0 0
\(423\) −13.7086 + 13.7086i −0.0324081 + 0.0324081i
\(424\) 0 0
\(425\) −48.3713 + 48.3713i −0.113815 + 0.113815i
\(426\) 0 0
\(427\) 381.248 381.248i 0.892852 0.892852i
\(428\) 0 0
\(429\) 26.2782 0.0612546
\(430\) 0 0
\(431\) −330.017 −0.765701 −0.382851 0.923810i \(-0.625058\pi\)
−0.382851 + 0.923810i \(0.625058\pi\)
\(432\) 0 0
\(433\) −2.11830 2.11830i −0.00489215 0.00489215i 0.704656 0.709549i \(-0.251101\pi\)
−0.709549 + 0.704656i \(0.751101\pi\)
\(434\) 0 0
\(435\) −64.6697 + 91.8304i −0.148666 + 0.211104i
\(436\) 0 0
\(437\) 62.5460 62.5460i 0.143126 0.143126i
\(438\) 0 0
\(439\) 240.917i 0.548785i −0.961618 0.274393i \(-0.911523\pi\)
0.961618 0.274393i \(-0.0884768\pi\)
\(440\) 0 0
\(441\) 74.3720i 0.168644i
\(442\) 0 0
\(443\) 298.890 + 298.890i 0.674695 + 0.674695i 0.958795 0.284100i \(-0.0916947\pi\)
−0.284100 + 0.958795i \(0.591695\pi\)
\(444\) 0 0
\(445\) −140.926 140.926i −0.316687 0.316687i
\(446\) 0 0
\(447\) −248.497 248.497i −0.555922 0.555922i
\(448\) 0 0
\(449\) 472.057 472.057i 1.05135 1.05135i 0.0527436 0.998608i \(-0.483203\pi\)
0.998608 0.0527436i \(-0.0167966\pi\)
\(450\) 0 0
\(451\) −426.508 −0.945695
\(452\) 0 0
\(453\) −133.760 133.760i −0.295277 0.295277i
\(454\) 0 0
\(455\) −26.1763 −0.0575303
\(456\) 0 0
\(457\) 375.045i 0.820668i 0.911935 + 0.410334i \(0.134588\pi\)
−0.911935 + 0.410334i \(0.865412\pi\)
\(458\) 0 0
\(459\) 71.0910 0.154882
\(460\) 0 0
\(461\) 280.910 + 280.910i 0.609350 + 0.609350i 0.942776 0.333426i \(-0.108205\pi\)
−0.333426 + 0.942776i \(0.608205\pi\)
\(462\) 0 0
\(463\) 296.343i 0.640050i −0.947409 0.320025i \(-0.896309\pi\)
0.947409 0.320025i \(-0.103691\pi\)
\(464\) 0 0
\(465\) −171.300 −0.368387
\(466\) 0 0
\(467\) 572.365 572.365i 1.22562 1.22562i 0.260018 0.965604i \(-0.416272\pi\)
0.965604 0.260018i \(-0.0837284\pi\)
\(468\) 0 0
\(469\) 119.329i 0.254434i
\(470\) 0 0
\(471\) −516.199 −1.09596
\(472\) 0 0
\(473\) 468.229i 0.989914i
\(474\) 0 0
\(475\) −15.3597 + 15.3597i −0.0323363 + 0.0323363i
\(476\) 0 0
\(477\) 52.4930i 0.110048i
\(478\) 0 0
\(479\) 468.571 + 468.571i 0.978227 + 0.978227i 0.999768 0.0215412i \(-0.00685732\pi\)
−0.0215412 + 0.999768i \(0.506857\pi\)
\(480\) 0 0
\(481\) −12.4686 + 12.4686i −0.0259223 + 0.0259223i
\(482\) 0 0
\(483\) −122.694 + 122.694i −0.254024 + 0.254024i
\(484\) 0 0
\(485\) 107.148 107.148i 0.220924 0.220924i
\(486\) 0 0
\(487\) −42.2851 −0.0868278 −0.0434139 0.999057i \(-0.513823\pi\)
−0.0434139 + 0.999057i \(0.513823\pi\)
\(488\) 0 0
\(489\) −553.586 −1.13208
\(490\) 0 0
\(491\) −370.462 370.462i −0.754505 0.754505i 0.220812 0.975317i \(-0.429129\pi\)
−0.975317 + 0.220812i \(0.929129\pi\)
\(492\) 0 0
\(493\) −324.395 228.448i −0.658001 0.463384i
\(494\) 0 0
\(495\) −30.2479 + 30.2479i −0.0611069 + 0.0611069i
\(496\) 0 0
\(497\) 312.880i 0.629537i
\(498\) 0 0
\(499\) 692.143i 1.38706i −0.720427 0.693530i \(-0.756054\pi\)
0.720427 0.693530i \(-0.243946\pi\)
\(500\) 0 0
\(501\) −36.3550 36.3550i −0.0725650 0.0725650i
\(502\) 0 0
\(503\) 277.112 + 277.112i 0.550919 + 0.550919i 0.926706 0.375787i \(-0.122628\pi\)
−0.375787 + 0.926706i \(0.622628\pi\)
\(504\) 0 0
\(505\) −116.409 116.409i −0.230513 0.230513i
\(506\) 0 0
\(507\) −200.049 + 200.049i −0.394574 + 0.394574i
\(508\) 0 0
\(509\) 383.380 0.753202 0.376601 0.926376i \(-0.377093\pi\)
0.376601 + 0.926376i \(0.377093\pi\)
\(510\) 0 0
\(511\) −162.265 162.265i −0.317543 0.317543i
\(512\) 0 0
\(513\) 22.5741 0.0440041
\(514\) 0 0
\(515\) 234.001i 0.454371i
\(516\) 0 0
\(517\) 41.2089 0.0797078
\(518\) 0 0
\(519\) −103.103 103.103i −0.198657 0.198657i
\(520\) 0 0
\(521\) 789.828i 1.51598i 0.652264 + 0.757992i \(0.273819\pi\)
−0.652264 + 0.757992i \(0.726181\pi\)
\(522\) 0 0
\(523\) 31.2758 0.0598008 0.0299004 0.999553i \(-0.490481\pi\)
0.0299004 + 0.999553i \(0.490481\pi\)
\(524\) 0 0
\(525\) 30.1306 30.1306i 0.0573915 0.0573915i
\(526\) 0 0
\(527\) 605.124i 1.14824i
\(528\) 0 0
\(529\) −114.456 −0.216362
\(530\) 0 0
\(531\) 181.811i 0.342395i
\(532\) 0 0
\(533\) −112.523 + 112.523i −0.211112 + 0.211112i
\(534\) 0 0
\(535\) 294.745i 0.550925i
\(536\) 0 0
\(537\) 18.9975 + 18.9975i 0.0353772 + 0.0353772i
\(538\) 0 0
\(539\) 111.783 111.783i 0.207390 0.207390i
\(540\) 0 0
\(541\) −249.049 + 249.049i −0.460349 + 0.460349i −0.898770 0.438421i \(-0.855538\pi\)
0.438421 + 0.898770i \(0.355538\pi\)
\(542\) 0 0
\(543\) 326.641 326.641i 0.601549 0.601549i
\(544\) 0 0
\(545\) −198.699 −0.364586
\(546\) 0 0
\(547\) −395.722 −0.723440 −0.361720 0.932287i \(-0.617810\pi\)
−0.361720 + 0.932287i \(0.617810\pi\)
\(548\) 0 0
\(549\) −232.454 232.454i −0.423414 0.423414i
\(550\) 0 0
\(551\) −103.008 72.5411i −0.186947 0.131654i
\(552\) 0 0
\(553\) 122.257 122.257i 0.221079 0.221079i
\(554\) 0 0
\(555\) 28.7044i 0.0517196i
\(556\) 0 0
\(557\) 519.056i 0.931879i 0.884817 + 0.465939i \(0.154284\pi\)
−0.884817 + 0.465939i \(0.845716\pi\)
\(558\) 0 0
\(559\) −123.529 123.529i −0.220983 0.220983i
\(560\) 0 0
\(561\) −106.852 106.852i −0.190467 0.190467i
\(562\) 0 0
\(563\) 598.061 + 598.061i 1.06227 + 1.06227i 0.997928 + 0.0643470i \(0.0204965\pi\)
0.0643470 + 0.997928i \(0.479504\pi\)
\(564\) 0 0
\(565\) −180.381 + 180.381i −0.319259 + 0.319259i
\(566\) 0 0
\(567\) −44.2827 −0.0781000
\(568\) 0 0
\(569\) −774.320 774.320i −1.36084 1.36084i −0.872844 0.488000i \(-0.837727\pi\)
−0.488000 0.872844i \(-0.662273\pi\)
\(570\) 0 0
\(571\) −273.896 −0.479679 −0.239839 0.970813i \(-0.577095\pi\)
−0.239839 + 0.970813i \(0.577095\pi\)
\(572\) 0 0
\(573\) 603.931i 1.05398i
\(574\) 0 0
\(575\) −101.802 −0.177047
\(576\) 0 0
\(577\) −51.2109 51.2109i −0.0887537 0.0887537i 0.661336 0.750090i \(-0.269990\pi\)
−0.750090 + 0.661336i \(0.769990\pi\)
\(578\) 0 0
\(579\) 111.075i 0.191839i
\(580\) 0 0
\(581\) 393.142 0.676664
\(582\) 0 0
\(583\) −78.8986 + 78.8986i −0.135332 + 0.135332i
\(584\) 0 0
\(585\) 15.9602i 0.0272823i
\(586\) 0 0
\(587\) 17.1834 0.0292733 0.0146366 0.999893i \(-0.495341\pi\)
0.0146366 + 0.999893i \(0.495341\pi\)
\(588\) 0 0
\(589\) 192.150i 0.326231i
\(590\) 0 0
\(591\) −208.991 + 208.991i −0.353622 + 0.353622i
\(592\) 0 0
\(593\) 821.772i 1.38579i −0.721039 0.692894i \(-0.756335\pi\)
0.721039 0.692894i \(-0.243665\pi\)
\(594\) 0 0
\(595\) 106.437 + 106.437i 0.178886 + 0.178886i
\(596\) 0 0
\(597\) −185.151 + 185.151i −0.310136 + 0.310136i
\(598\) 0 0
\(599\) 705.424 705.424i 1.17767 1.17767i 0.197333 0.980336i \(-0.436772\pi\)
0.980336 0.197333i \(-0.0632281\pi\)
\(600\) 0 0
\(601\) −438.379 + 438.379i −0.729415 + 0.729415i −0.970503 0.241088i \(-0.922496\pi\)
0.241088 + 0.970503i \(0.422496\pi\)
\(602\) 0 0
\(603\) 72.7574 0.120659
\(604\) 0 0
\(605\) −179.637 −0.296921
\(606\) 0 0
\(607\) −640.898 640.898i −1.05585 1.05585i −0.998346 0.0574999i \(-0.981687\pi\)
−0.0574999 0.998346i \(-0.518313\pi\)
\(608\) 0 0
\(609\) 202.066 + 142.301i 0.331800 + 0.233663i
\(610\) 0 0
\(611\) 10.8719 10.8719i 0.0177935 0.0177935i
\(612\) 0 0
\(613\) 744.442i 1.21442i 0.794540 + 0.607212i \(0.207712\pi\)
−0.794540 + 0.607212i \(0.792288\pi\)
\(614\) 0 0
\(615\) 259.041i 0.421205i
\(616\) 0 0
\(617\) 294.924 + 294.924i 0.477998 + 0.477998i 0.904491 0.426493i \(-0.140251\pi\)
−0.426493 + 0.904491i \(0.640251\pi\)
\(618\) 0 0
\(619\) 232.097 + 232.097i 0.374955 + 0.374955i 0.869278 0.494323i \(-0.164584\pi\)
−0.494323 + 0.869278i \(0.664584\pi\)
\(620\) 0 0
\(621\) 74.8087 + 74.8087i 0.120465 + 0.120465i
\(622\) 0 0
\(623\) −310.096 + 310.096i −0.497747 + 0.497747i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) −33.9296 33.9296i −0.0541142 0.0541142i
\(628\) 0 0
\(629\) 101.399 0.161207
\(630\) 0 0
\(631\) 633.231i 1.00354i −0.865002 0.501768i \(-0.832683\pi\)
0.865002 0.501768i \(-0.167317\pi\)
\(632\) 0 0
\(633\) −112.540 −0.177788
\(634\) 0 0
\(635\) 261.929 + 261.929i 0.412487 + 0.412487i
\(636\) 0 0
\(637\) 58.9820i 0.0925934i
\(638\) 0 0
\(639\) −190.769 −0.298543
\(640\) 0 0
\(641\) 238.969 238.969i 0.372806 0.372806i −0.495692 0.868498i \(-0.665086\pi\)
0.868498 + 0.495692i \(0.165086\pi\)
\(642\) 0 0
\(643\) 23.5789i 0.0366702i 0.999832 + 0.0183351i \(0.00583657\pi\)
−0.999832 + 0.0183351i \(0.994163\pi\)
\(644\) 0 0
\(645\) 284.381 0.440900
\(646\) 0 0
\(647\) 437.536i 0.676254i −0.941100 0.338127i \(-0.890207\pi\)
0.941100 0.338127i \(-0.109793\pi\)
\(648\) 0 0
\(649\) −273.268 + 273.268i −0.421061 + 0.421061i
\(650\) 0 0
\(651\) 376.933i 0.579005i
\(652\) 0 0
\(653\) 13.4869 + 13.4869i 0.0206538 + 0.0206538i 0.717358 0.696704i \(-0.245351\pi\)
−0.696704 + 0.717358i \(0.745351\pi\)
\(654\) 0 0
\(655\) −308.837 + 308.837i −0.471507 + 0.471507i
\(656\) 0 0
\(657\) −98.9358 + 98.9358i −0.150587 + 0.150587i
\(658\) 0 0
\(659\) −20.4878 + 20.4878i −0.0310892 + 0.0310892i −0.722480 0.691391i \(-0.756998\pi\)
0.691391 + 0.722480i \(0.256998\pi\)
\(660\) 0 0
\(661\) −460.347 −0.696441 −0.348220 0.937413i \(-0.613214\pi\)
−0.348220 + 0.937413i \(0.613214\pi\)
\(662\) 0 0
\(663\) −56.3799 −0.0850376
\(664\) 0 0
\(665\) 33.7979 + 33.7979i 0.0508240 + 0.0508240i
\(666\) 0 0
\(667\) −100.964 581.754i −0.151370 0.872195i
\(668\) 0 0
\(669\) −360.462 + 360.462i −0.538806 + 0.538806i
\(670\) 0 0
\(671\) 698.771i 1.04139i
\(672\) 0 0
\(673\) 132.957i 0.197559i 0.995109 + 0.0987795i \(0.0314939\pi\)
−0.995109 + 0.0987795i \(0.968506\pi\)
\(674\) 0 0
\(675\) −18.3712 18.3712i −0.0272166 0.0272166i
\(676\) 0 0
\(677\) −599.109 599.109i −0.884947 0.884947i 0.109085 0.994032i \(-0.465208\pi\)
−0.994032 + 0.109085i \(0.965208\pi\)
\(678\) 0 0
\(679\) −235.772 235.772i −0.347234 0.347234i
\(680\) 0 0
\(681\) −73.5010 + 73.5010i −0.107931 + 0.107931i
\(682\) 0 0
\(683\) −1337.94 −1.95891 −0.979456 0.201658i \(-0.935367\pi\)
−0.979456 + 0.201658i \(0.935367\pi\)
\(684\) 0 0
\(685\) 184.088 + 184.088i 0.268742 + 0.268742i
\(686\) 0 0
\(687\) 22.4225 0.0326382
\(688\) 0 0
\(689\) 41.6305i 0.0604216i
\(690\) 0 0
\(691\) 198.701 0.287555 0.143778 0.989610i \(-0.454075\pi\)
0.143778 + 0.989610i \(0.454075\pi\)
\(692\) 0 0
\(693\) 66.5582 + 66.5582i 0.0960436 + 0.0960436i
\(694\) 0 0
\(695\) 387.467i 0.557507i
\(696\) 0 0
\(697\) 915.074 1.31287
\(698\) 0 0
\(699\) −54.6991 + 54.6991i −0.0782533 + 0.0782533i
\(700\) 0 0
\(701\) 60.4021i 0.0861656i 0.999072 + 0.0430828i \(0.0137179\pi\)
−0.999072 + 0.0430828i \(0.986282\pi\)
\(702\) 0 0
\(703\) 32.1982 0.0458012
\(704\) 0 0
\(705\) 25.0284i 0.0355013i
\(706\) 0 0
\(707\) −256.150 + 256.150i −0.362305 + 0.362305i
\(708\) 0 0
\(709\) 209.910i 0.296065i −0.988982 0.148033i \(-0.952706\pi\)
0.988982 0.148033i \(-0.0472941\pi\)
\(710\) 0 0
\(711\) −74.5424 74.5424i −0.104842 0.104842i
\(712\) 0 0
\(713\) 636.769 636.769i 0.893084 0.893084i
\(714\) 0 0
\(715\) 23.9886 23.9886i 0.0335505 0.0335505i
\(716\) 0 0
\(717\) −362.841 + 362.841i −0.506055 + 0.506055i
\(718\) 0 0
\(719\) −339.437 −0.472096 −0.236048 0.971741i \(-0.575852\pi\)
−0.236048 + 0.971741i \(0.575852\pi\)
\(720\) 0 0
\(721\) −514.901 −0.714149
\(722\) 0 0
\(723\) 10.6169 + 10.6169i 0.0146846 + 0.0146846i
\(724\) 0 0
\(725\) 24.7942 + 142.864i 0.0341990 + 0.197054i
\(726\) 0 0
\(727\) 516.525 516.525i 0.710489 0.710489i −0.256149 0.966637i \(-0.582454\pi\)
0.966637 + 0.256149i \(0.0824536\pi\)
\(728\) 0 0
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) 1004.59i 1.37426i
\(732\) 0 0
\(733\) −223.530 223.530i −0.304953 0.304953i 0.537995 0.842948i \(-0.319182\pi\)
−0.842948 + 0.537995i \(0.819182\pi\)
\(734\) 0 0
\(735\) 67.8920 + 67.8920i 0.0923701 + 0.0923701i
\(736\) 0 0
\(737\) −109.357 109.357i −0.148381 0.148381i
\(738\) 0 0
\(739\) 918.763 918.763i 1.24325 1.24325i 0.284608 0.958644i \(-0.408136\pi\)
0.958644 0.284608i \(-0.0918636\pi\)
\(740\) 0 0
\(741\) −17.9028 −0.0241603
\(742\) 0 0
\(743\) −310.585 310.585i −0.418014 0.418014i 0.466505 0.884519i \(-0.345513\pi\)
−0.884519 + 0.466505i \(0.845513\pi\)
\(744\) 0 0
\(745\) −453.692 −0.608982
\(746\) 0 0
\(747\) 239.706i 0.320892i
\(748\) 0 0
\(749\) 648.564 0.865906
\(750\) 0 0
\(751\) −183.665 183.665i −0.244561 0.244561i 0.574173 0.818734i \(-0.305324\pi\)
−0.818734 + 0.574173i \(0.805324\pi\)
\(752\) 0 0
\(753\) 228.651i 0.303654i
\(754\) 0 0
\(755\) −244.212 −0.323460
\(756\) 0 0
\(757\) 651.311 651.311i 0.860384 0.860384i −0.130999 0.991383i \(-0.541818\pi\)
0.991383 + 0.130999i \(0.0418184\pi\)
\(758\) 0 0
\(759\) 224.880i 0.296284i
\(760\) 0 0
\(761\) −143.381 −0.188411 −0.0942055 0.995553i \(-0.530031\pi\)
−0.0942055 + 0.995553i \(0.530031\pi\)
\(762\) 0 0
\(763\) 437.223i 0.573031i
\(764\) 0 0
\(765\) 64.8969 64.8969i 0.0848325 0.0848325i
\(766\) 0 0
\(767\) 144.189i 0.187991i
\(768\) 0 0
\(769\) −420.214 420.214i −0.546442 0.546442i 0.378968 0.925410i \(-0.376279\pi\)
−0.925410 + 0.378968i \(0.876279\pi\)
\(770\) 0 0
\(771\) −358.058 + 358.058i −0.464407 + 0.464407i
\(772\) 0 0
\(773\) 569.353 569.353i 0.736550 0.736550i −0.235359 0.971909i \(-0.575627\pi\)
0.971909 + 0.235359i \(0.0756265\pi\)
\(774\) 0 0
\(775\) −156.375 + 156.375i −0.201774 + 0.201774i
\(776\) 0 0
\(777\) −63.1619 −0.0812894
\(778\) 0 0
\(779\) 290.571 0.373005
\(780\) 0 0
\(781\) 286.731 + 286.731i 0.367134 + 0.367134i
\(782\) 0 0
\(783\) 86.7635 123.203i 0.110809 0.157348i
\(784\) 0 0
\(785\) −471.223 + 471.223i −0.600285 + 0.600285i
\(786\) 0 0
\(787\) 474.180i 0.602516i −0.953543 0.301258i \(-0.902593\pi\)
0.953543 0.301258i \(-0.0974066\pi\)
\(788\) 0 0
\(789\) 520.079i 0.659163i
\(790\) 0 0
\(791\) 396.916 + 396.916i 0.501790 + 0.501790i
\(792\) 0 0
\(793\) 184.352 + 184.352i 0.232474 + 0.232474i
\(794\) 0 0
\(795\) −47.9193 47.9193i −0.0602759 0.0602759i
\(796\) 0 0
\(797\) 138.576 138.576i 0.173872 0.173872i −0.614806 0.788678i \(-0.710766\pi\)
0.788678 + 0.614806i \(0.210766\pi\)
\(798\) 0 0
\(799\) −88.4138 −0.110656
\(800\) 0 0
\(801\) 189.072 + 189.072i 0.236045 + 0.236045i
\(802\) 0 0
\(803\) 297.407 0.370370
\(804\) 0 0
\(805\) 224.007i 0.278270i
\(806\) 0 0
\(807\) 573.242 0.710337
\(808\) 0 0
\(809\) 197.806 + 197.806i 0.244507 + 0.244507i 0.818712 0.574205i \(-0.194689\pi\)
−0.574205 + 0.818712i \(0.694689\pi\)
\(810\) 0 0
\(811\) 564.175i 0.695653i −0.937559 0.347827i \(-0.886920\pi\)
0.937559 0.347827i \(-0.113080\pi\)
\(812\) 0 0
\(813\) 573.195 0.705037
\(814\) 0 0
\(815\) −505.352 + 505.352i −0.620064 + 0.620064i
\(816\) 0 0
\(817\) 318.994i 0.390446i
\(818\) 0 0
\(819\) 35.1192 0.0428805
\(820\) 0 0
\(821\) 215.716i 0.262748i 0.991333 + 0.131374i \(0.0419389\pi\)
−0.991333 + 0.131374i \(0.958061\pi\)
\(822\) 0 0
\(823\) −907.469 + 907.469i −1.10264 + 1.10264i −0.108544 + 0.994092i \(0.534619\pi\)
−0.994092 + 0.108544i \(0.965381\pi\)
\(824\) 0 0
\(825\) 55.2249i 0.0669392i
\(826\) 0 0
\(827\) 328.919 + 328.919i 0.397725 + 0.397725i 0.877430 0.479705i \(-0.159256\pi\)
−0.479705 + 0.877430i \(0.659256\pi\)
\(828\) 0 0
\(829\) −60.3347 + 60.3347i −0.0727801 + 0.0727801i −0.742560 0.669780i \(-0.766389\pi\)
0.669780 + 0.742560i \(0.266389\pi\)
\(830\) 0 0
\(831\) 359.856 359.856i 0.433040 0.433040i
\(832\) 0 0
\(833\) −239.831 + 239.831i −0.287913 + 0.287913i
\(834\) 0 0
\(835\) −66.3749 −0.0794909
\(836\) 0 0
\(837\) 229.823 0.274579
\(838\) 0 0
\(839\) 862.434 + 862.434i 1.02793 + 1.02793i 0.999599 + 0.0283323i \(0.00901967\pi\)
0.0283323 + 0.999599i \(0.490980\pi\)
\(840\) 0 0
\(841\) −791.820 + 283.377i −0.941522 + 0.336953i
\(842\) 0 0
\(843\) −110.005 + 110.005i −0.130492 + 0.130492i
\(844\) 0 0
\(845\) 365.238i 0.432234i
\(846\) 0 0
\(847\) 395.278i 0.466680i
\(848\) 0 0
\(849\) 637.513 + 637.513i 0.750899 + 0.750899i
\(850\) 0 0
\(851\) 106.702 + 106.702i 0.125384 + 0.125384i
\(852\) 0 0
\(853\) 904.743 + 904.743i 1.06066 + 1.06066i 0.998037 + 0.0626230i \(0.0199466\pi\)
0.0626230 + 0.998037i \(0.480053\pi\)
\(854\) 0 0
\(855\) 20.6073 20.6073i 0.0241021 0.0241021i
\(856\) 0 0
\(857\) −785.849 −0.916977 −0.458488 0.888700i \(-0.651609\pi\)
−0.458488 + 0.888700i \(0.651609\pi\)
\(858\) 0 0
\(859\) 591.335 + 591.335i 0.688399 + 0.688399i 0.961878 0.273479i \(-0.0881743\pi\)
−0.273479 + 0.961878i \(0.588174\pi\)
\(860\) 0 0
\(861\) −570.001 −0.662022
\(862\) 0 0
\(863\) 27.6383i 0.0320258i −0.999872 0.0160129i \(-0.994903\pi\)
0.999872 0.0160129i \(-0.00509729\pi\)
\(864\) 0 0
\(865\) −188.240 −0.217618
\(866\) 0 0
\(867\) −124.700 124.700i −0.143830 0.143830i
\(868\) 0 0
\(869\) 224.079i 0.257858i
\(870\) 0 0
\(871\) −57.7015 −0.0662474
\(872\) 0 0
\(873\) −143.755 + 143.755i −0.164667 + 0.164667i
\(874\) 0 0
\(875\) 55.0106i 0.0628693i
\(876\) 0 0
\(877\) −975.866 −1.11273 −0.556366 0.830937i \(-0.687805\pi\)
−0.556366 + 0.830937i \(0.687805\pi\)
\(878\) 0 0
\(879\) 356.158i 0.405185i
\(880\) 0 0
\(881\) 124.169 124.169i 0.140941 0.140941i −0.633116 0.774057i \(-0.718224\pi\)
0.774057 + 0.633116i \(0.218224\pi\)
\(882\) 0 0
\(883\) 988.891i 1.11992i −0.828519 0.559961i \(-0.810816\pi\)
0.828519 0.559961i \(-0.189184\pi\)
\(884\) 0 0
\(885\) −165.970 165.970i −0.187537 0.187537i
\(886\) 0 0
\(887\) 765.335 765.335i 0.862835 0.862835i −0.128832 0.991666i \(-0.541123\pi\)
0.991666 + 0.128832i \(0.0411227\pi\)
\(888\) 0 0
\(889\) 576.356 576.356i 0.648319 0.648319i
\(890\) 0 0
\(891\) 40.5818 40.5818i 0.0455464 0.0455464i
\(892\) 0 0
\(893\) −28.0748 −0.0314387
\(894\) 0 0
\(895\) 34.6846 0.0387537
\(896\) 0 0
\(897\) −59.3284 59.3284i −0.0661409 0.0661409i
\(898\) 0 0
\(899\) −1048.70 738.528i −1.16652 0.821499i
\(900\) 0 0
\(901\) 169.277 169.277i 0.187877 0.187877i
\(902\) 0 0
\(903\) 625.758i 0.692977i
\(904\) 0 0
\(905\) 596.363i 0.658964i
\(906\) 0 0
\(907\) −778.395 778.395i −0.858208 0.858208i 0.132919 0.991127i \(-0.457565\pi\)
−0.991127 + 0.132919i \(0.957565\pi\)
\(908\) 0 0
\(909\) 156.179 + 156.179i 0.171814 + 0.171814i
\(910\) 0 0
\(911\) −230.510 230.510i −0.253029 0.253029i 0.569182 0.822211i \(-0.307260\pi\)
−0.822211 + 0.569182i \(0.807260\pi\)
\(912\) 0 0
\(913\) −360.286 + 360.286i −0.394617 + 0.394617i
\(914\) 0 0
\(915\) −424.401 −0.463827
\(916\) 0 0
\(917\) 679.573 + 679.573i 0.741083 + 0.741083i
\(918\) 0 0
\(919\) 502.790 0.547105 0.273553 0.961857i \(-0.411801\pi\)
0.273553 + 0.961857i \(0.411801\pi\)
\(920\) 0 0
\(921\) 195.408i 0.212169i
\(922\) 0 0
\(923\) 151.292 0.163914
\(924\) 0 0
\(925\) −26.2034 26.2034i −0.0283280 0.0283280i
\(926\) 0 0
\(927\) 313.945i 0.338668i
\(928\) 0 0
\(929\) 592.492 0.637773 0.318887 0.947793i \(-0.396691\pi\)
0.318887 + 0.947793i \(0.396691\pi\)
\(930\) 0 0
\(931\) −76.1556 + 76.1556i −0.0817998 + 0.0817998i
\(932\) 0 0
\(933\) 114.790i 0.123033i
\(934\) 0 0
\(935\) −195.084 −0.208646
\(936\) 0 0
\(937\) 56.7969i 0.0606157i −0.999541 0.0303078i \(-0.990351\pi\)
0.999541 0.0303078i \(-0.00964876\pi\)
\(938\) 0 0
\(939\) 567.178 567.178i 0.604024 0.604024i
\(940\) 0 0
\(941\) 391.645i 0.416201i 0.978107 + 0.208100i \(0.0667280\pi\)
−0.978107 + 0.208100i \(0.933272\pi\)
\(942\) 0 0
\(943\) 962.928 + 962.928i 1.02113 + 1.02113i
\(944\) 0 0
\(945\) −40.4244 + 40.4244i −0.0427771 + 0.0427771i
\(946\) 0 0
\(947\) 742.514 742.514i 0.784070 0.784070i −0.196445 0.980515i \(-0.562940\pi\)
0.980515 + 0.196445i \(0.0629397\pi\)
\(948\) 0 0
\(949\) 78.4628 78.4628i 0.0826794 0.0826794i
\(950\) 0 0
\(951\) −440.753 −0.463463
\(952\) 0 0
\(953\) −1029.42 −1.08019 −0.540096 0.841603i \(-0.681612\pi\)
−0.540096 + 0.841603i \(0.681612\pi\)
\(954\) 0 0
\(955\) −551.311 551.311i −0.577289 0.577289i
\(956\) 0 0
\(957\) −315.587 + 54.7704i −0.329767 + 0.0572313i
\(958\) 0 0
\(959\) 405.073 405.073i 0.422391 0.422391i
\(960\) 0 0
\(961\) 995.244i 1.03563i
\(962\) 0 0
\(963\) 395.442i 0.410635i
\(964\) 0 0
\(965\) −101.397 101.397i −0.105075 0.105075i
\(966\) 0 0
\(967\) 216.951 + 216.951i 0.224355 + 0.224355i 0.810329 0.585975i \(-0.199288\pi\)
−0.585975 + 0.810329i \(0.699288\pi\)
\(968\) 0 0
\(969\) 72.7959 + 72.7959i 0.0751248 + 0.0751248i
\(970\) 0 0
\(971\) −375.130 + 375.130i −0.386334 + 0.386334i −0.873378 0.487044i \(-0.838075\pi\)
0.487044 + 0.873378i \(0.338075\pi\)
\(972\) 0 0
\(973\) −852.592 −0.876251
\(974\) 0 0
\(975\) 14.5696 + 14.5696i 0.0149432 + 0.0149432i
\(976\) 0 0
\(977\) 1650.72 1.68958 0.844790 0.535097i \(-0.179725\pi\)
0.844790 + 0.535097i \(0.179725\pi\)
\(978\) 0 0
\(979\) 568.361i 0.580553i
\(980\) 0 0
\(981\) 266.583 0.271746
\(982\) 0 0
\(983\) 34.2313 + 34.2313i 0.0348233 + 0.0348233i 0.724304 0.689481i \(-0.242161\pi\)
−0.689481 + 0.724304i \(0.742161\pi\)
\(984\) 0 0
\(985\) 381.563i 0.387374i
\(986\) 0 0
\(987\) 55.0731 0.0557985
\(988\) 0 0
\(989\) −1057.12 + 1057.12i −1.06888 + 1.06888i
\(990\) 0 0
\(991\) 645.719i 0.651583i 0.945442 + 0.325792i \(0.105631\pi\)
−0.945442 + 0.325792i \(0.894369\pi\)
\(992\) 0 0
\(993\) −423.392 −0.426377
\(994\) 0 0
\(995\) 338.038i 0.339737i
\(996\) 0 0
\(997\) 945.951 945.951i 0.948798 0.948798i −0.0499539 0.998752i \(-0.515907\pi\)
0.998752 + 0.0499539i \(0.0159075\pi\)
\(998\) 0 0
\(999\) 38.5110i 0.0385495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1740.3.bl.a.481.14 80
29.12 odd 4 inner 1740.3.bl.a.1201.14 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.3.bl.a.481.14 80 1.1 even 1 trivial
1740.3.bl.a.1201.14 yes 80 29.12 odd 4 inner