Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1740,3,Mod(481,1740)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1740, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1740.481");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1740.bl (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(47.4115659987\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(40\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
481.1 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | −12.9313 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.2 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | −10.4655 | 0 | − | 3.00000i | 0 | |||||||||||||||
481.3 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | −9.56934 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.4 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | −9.09417 | 0 | − | 3.00000i | 0 | |||||||||||||||
481.5 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | 8.51481 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.6 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | −7.04307 | 0 | − | 3.00000i | 0 | |||||||||||||||
481.7 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | 4.30700 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.8 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | −4.63403 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.9 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | 1.59253 | 0 | − | 3.00000i | 0 | |||||||||||||||
481.10 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | 0.496482 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.11 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | −0.562325 | 0 | − | 3.00000i | 0 | |||||||||||||||
481.12 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | −2.97647 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.13 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | −3.53400 | 0 | − | 3.00000i | 0 | |||||||||||||||
481.14 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | 4.92030 | 0 | − | 3.00000i | 0 | |||||||||||||||
481.15 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | −5.25933 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.16 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | 6.64250 | 0 | − | 3.00000i | 0 | |||||||||||||||
481.17 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | 8.97457 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.18 | 0 | −1.22474 | + | 1.22474i | 0 | − | 2.23607i | 0 | 8.60551 | 0 | − | 3.00000i | 0 | ||||||||||||||
481.19 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | 10.4383 | 0 | − | 3.00000i | 0 | |||||||||||||||
481.20 | 0 | −1.22474 | + | 1.22474i | 0 | 2.23607i | 0 | 11.5776 | 0 | − | 3.00000i | 0 | |||||||||||||||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1740.3.bl.a | ✓ | 80 |
29.c | odd | 4 | 1 | inner | 1740.3.bl.a | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1740.3.bl.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
1740.3.bl.a | ✓ | 80 | 29.c | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(1740, [\chi])\).