L(s) = 1 | + (−2.20 + 3.82i)2-s + (1.62 + 2.80i)3-s + (−5.74 − 9.94i)4-s − 14.3·6-s + (−16.1 − 9.14i)7-s + 15.3·8-s + (8.24 − 14.2i)9-s + (0.0710 + 0.123i)11-s + (18.6 − 32.2i)12-s + 32.1·13-s + (70.4 − 41.3i)14-s + (11.9 − 20.7i)16-s + (−57.1 − 99.0i)17-s + (36.3 + 63.0i)18-s + (−21.6 + 37.4i)19-s + ⋯ |
L(s) = 1 | + (−0.780 + 1.35i)2-s + (0.312 + 0.540i)3-s + (−0.717 − 1.24i)4-s − 0.973·6-s + (−0.869 − 0.493i)7-s + 0.679·8-s + (0.305 − 0.528i)9-s + (0.00194 + 0.00337i)11-s + (0.447 − 0.775i)12-s + 0.685·13-s + (1.34 − 0.790i)14-s + (0.187 − 0.324i)16-s + (−0.815 − 1.41i)17-s + (0.476 + 0.825i)18-s + (−0.260 + 0.452i)19-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.997−0.0706i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.997−0.0706i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.997−0.0706i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.997−0.0706i)
|
Particular Values
L(2) |
≈ |
0.746826+0.0264190i |
L(21) |
≈ |
0.746826+0.0264190i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+(16.1+9.14i)T |
good | 2 | 1+(2.20−3.82i)T+(−4−6.92i)T2 |
| 3 | 1+(−1.62−2.80i)T+(−13.5+23.3i)T2 |
| 11 | 1+(−0.0710−0.123i)T+(−665.5+1.15e3i)T2 |
| 13 | 1−32.1T+2.19e3T2 |
| 17 | 1+(57.1+99.0i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(21.6−37.4i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−77.2+133.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+40.1T+2.43e4T2 |
| 31 | 1+(37.7+65.3i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(200.−346.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+95.4T+6.89e4T2 |
| 43 | 1−340.T+7.95e4T2 |
| 47 | 1+(3.74−6.48i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(338.+586.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(398.+689.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−378.+655.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(370.+641.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−37.0T+3.57e5T2 |
| 73 | 1+(−40.4−70.0i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(−158.+274.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−945.T+5.71e5T2 |
| 89 | 1+(391.−678.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+393.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.40829537592478229807864523193, −10.85747441423551795243915261607, −9.737897684390995486412421068998, −9.201739799802816013860575091865, −8.219331503408069841046718738193, −6.88231215486654320412216756869, −6.41686348523769278359931107525, −4.79282411161444895706586429762, −3.31415683198840291245710616870, −0.44381878714096277187893656264,
1.46230159442991157565174763748, 2.60273616426828695698773556412, 3.87502284639498457921377694002, 5.94100655226129177340568679603, 7.31475374520168267770387888868, 8.651923546823838100460404959365, 9.155430338939792693972064695472, 10.45079361965578099777883756069, 11.01653833421437204358340154113, 12.27583347986876047191124748397