Properties

Label 175.4.e.c
Level $175$
Weight $4$
Character orbit 175.e
Analytic conductor $10.325$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(51,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.51");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + 3 \beta_{2} + \beta_1) q^{2} + ( - \beta_{2} + 3 \beta_1 - 1) q^{3} + ( - 3 \beta_{2} - 6 \beta_1 - 3) q^{4} + (8 \beta_{3} - 3) q^{6} + (2 \beta_{3} + 5 \beta_{2} - 11 \beta_1 - 3) q^{7}+ \cdots + (4 \beta_{3} + 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} - 2 q^{3} - 6 q^{4} - 12 q^{6} - 22 q^{7} - 12 q^{8} + 16 q^{9} - 28 q^{11} + 66 q^{12} + 72 q^{13} + 84 q^{14} + 14 q^{16} - 76 q^{17} + 72 q^{18} - 160 q^{19} + 134 q^{21} + 88 q^{22} - 22 q^{23}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
0.707107 + 1.22474i
−0.707107 1.22474i
0.707107 1.22474i
−0.707107 + 1.22474i
−2.20711 + 3.82282i 1.62132 + 2.80821i −5.74264 9.94655i 0 −14.3137 −16.1066 9.14207i 15.3848 8.24264 14.2767i 0
51.2 −0.792893 + 1.37333i −2.62132 4.54026i 2.74264 + 4.75039i 0 8.31371 5.10660 + 17.8023i −21.3848 −0.242641 + 0.420266i 0
151.1 −2.20711 3.82282i 1.62132 2.80821i −5.74264 + 9.94655i 0 −14.3137 −16.1066 + 9.14207i 15.3848 8.24264 + 14.2767i 0
151.2 −0.792893 1.37333i −2.62132 + 4.54026i 2.74264 4.75039i 0 8.31371 5.10660 17.8023i −21.3848 −0.242641 0.420266i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.4.e.c 4
5.b even 2 1 35.4.e.b 4
5.c odd 4 2 175.4.k.c 8
7.c even 3 1 inner 175.4.e.c 4
7.c even 3 1 1225.4.a.x 2
7.d odd 6 1 1225.4.a.v 2
15.d odd 2 1 315.4.j.c 4
20.d odd 2 1 560.4.q.i 4
35.c odd 2 1 245.4.e.l 4
35.i odd 6 1 245.4.a.h 2
35.i odd 6 1 245.4.e.l 4
35.j even 6 1 35.4.e.b 4
35.j even 6 1 245.4.a.g 2
35.l odd 12 2 175.4.k.c 8
105.o odd 6 1 315.4.j.c 4
105.o odd 6 1 2205.4.a.bf 2
105.p even 6 1 2205.4.a.bg 2
140.p odd 6 1 560.4.q.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.e.b 4 5.b even 2 1
35.4.e.b 4 35.j even 6 1
175.4.e.c 4 1.a even 1 1 trivial
175.4.e.c 4 7.c even 3 1 inner
175.4.k.c 8 5.c odd 4 2
175.4.k.c 8 35.l odd 12 2
245.4.a.g 2 35.j even 6 1
245.4.a.h 2 35.i odd 6 1
245.4.e.l 4 35.c odd 2 1
245.4.e.l 4 35.i odd 6 1
315.4.j.c 4 15.d odd 2 1
315.4.j.c 4 105.o odd 6 1
560.4.q.i 4 20.d odd 2 1
560.4.q.i 4 140.p odd 6 1
1225.4.a.v 2 7.d odd 6 1
1225.4.a.x 2 7.c even 3 1
2205.4.a.bf 2 105.o odd 6 1
2205.4.a.bg 2 105.p even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 6T_{2}^{3} + 29T_{2}^{2} + 42T_{2} + 49 \) acting on \(S_{4}^{\mathrm{new}}(175, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 6 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 22 T^{3} + \cdots + 117649 \) Copy content Toggle raw display
$11$ \( T^{4} + 28 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( (T^{2} - 36 T + 124)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 76 T^{3} + \cdots + 19254544 \) Copy content Toggle raw display
$19$ \( T^{4} + 160 T^{3} + \cdots + 25482304 \) Copy content Toggle raw display
$23$ \( T^{4} + 22 T^{3} + \cdots + 742944049 \) Copy content Toggle raw display
$29$ \( (T^{2} + 250 T + 8425)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 132 T^{3} + \cdots + 244734736 \) Copy content Toggle raw display
$37$ \( T^{4} + 416 T^{3} + \cdots + 39337984 \) Copy content Toggle raw display
$41$ \( (T^{2} + 106 T + 1009)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 666 T + 110839)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 196 T^{3} + \cdots + 1993744 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 34688317504 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 1217172544 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 419125465201 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 163157021329 \) Copy content Toggle raw display
$71$ \( (T^{2} - 1064 T + 38024)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 172 T^{3} + \cdots + 418284304 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 85736524864 \) Copy content Toggle raw display
$83$ \( (T^{2} - 1906 T + 908159)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 10884122929 \) Copy content Toggle raw display
$97$ \( (T^{2} - 628 T - 401404)^{2} \) Copy content Toggle raw display
show more
show less