Properties

Label 245.4.a.h
Level $245$
Weight $4$
Character orbit 245.a
Self dual yes
Analytic conductor $14.455$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4554679514\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 3) q^{2} + (3 \beta + 1) q^{3} + ( - 6 \beta + 3) q^{4} - 5 q^{5} + ( - 8 \beta + 3) q^{6} + (13 \beta + 3) q^{8} + (6 \beta - 8) q^{9} + ( - 5 \beta + 15) q^{10} + (10 \beta + 14) q^{11}+ \cdots + (4 \beta + 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{2} + 2 q^{3} + 6 q^{4} - 10 q^{5} + 6 q^{6} + 6 q^{8} - 16 q^{9} + 30 q^{10} + 28 q^{11} - 66 q^{12} + 36 q^{13} - 10 q^{15} - 14 q^{16} + 76 q^{17} + 72 q^{18} - 160 q^{19} - 30 q^{20} - 44 q^{22}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−4.41421 −3.24264 11.4853 −5.00000 14.3137 0 −15.3848 −16.4853 22.0711
1.2 −1.58579 5.24264 −5.48528 −5.00000 −8.31371 0 21.3848 0.485281 7.92893
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.4.a.h 2
3.b odd 2 1 2205.4.a.bg 2
5.b even 2 1 1225.4.a.v 2
7.b odd 2 1 245.4.a.g 2
7.c even 3 2 245.4.e.l 4
7.d odd 6 2 35.4.e.b 4
21.c even 2 1 2205.4.a.bf 2
21.g even 6 2 315.4.j.c 4
28.f even 6 2 560.4.q.i 4
35.c odd 2 1 1225.4.a.x 2
35.i odd 6 2 175.4.e.c 4
35.k even 12 4 175.4.k.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.e.b 4 7.d odd 6 2
175.4.e.c 4 35.i odd 6 2
175.4.k.c 8 35.k even 12 4
245.4.a.g 2 7.b odd 2 1
245.4.a.h 2 1.a even 1 1 trivial
245.4.e.l 4 7.c even 3 2
315.4.j.c 4 21.g even 6 2
560.4.q.i 4 28.f even 6 2
1225.4.a.v 2 5.b even 2 1
1225.4.a.x 2 35.c odd 2 1
2205.4.a.bf 2 21.c even 2 1
2205.4.a.bg 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(245))\):

\( T_{2}^{2} + 6T_{2} + 7 \) Copy content Toggle raw display
\( T_{3}^{2} - 2T_{3} - 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 6T + 7 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 17 \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 28T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 36T + 124 \) Copy content Toggle raw display
$17$ \( T^{2} - 76T - 4388 \) Copy content Toggle raw display
$19$ \( T^{2} + 160T + 5048 \) Copy content Toggle raw display
$23$ \( T^{2} + 22T - 27257 \) Copy content Toggle raw display
$29$ \( T^{2} + 250T + 8425 \) Copy content Toggle raw display
$31$ \( T^{2} - 132T - 15644 \) Copy content Toggle raw display
$37$ \( T^{2} + 416T + 6272 \) Copy content Toggle raw display
$41$ \( T^{2} - 106T + 1009 \) Copy content Toggle raw display
$43$ \( T^{2} + 666T + 110839 \) Copy content Toggle raw display
$47$ \( T^{2} - 196T + 1412 \) Copy content Toggle raw display
$53$ \( T^{2} + 952T + 186248 \) Copy content Toggle raw display
$59$ \( T^{2} + 840T + 34888 \) Copy content Toggle raw display
$61$ \( T^{2} + 98T - 647399 \) Copy content Toggle raw display
$67$ \( T^{2} + 1286 T + 403927 \) Copy content Toggle raw display
$71$ \( T^{2} - 1064T + 38024 \) Copy content Toggle raw display
$73$ \( T^{2} - 172T - 20452 \) Copy content Toggle raw display
$79$ \( T^{2} + 1240 T + 292808 \) Copy content Toggle raw display
$83$ \( T^{2} - 1906 T + 908159 \) Copy content Toggle raw display
$89$ \( T^{2} + 650T - 104327 \) Copy content Toggle raw display
$97$ \( T^{2} - 628T - 401404 \) Copy content Toggle raw display
show more
show less