L(s) = 1 | + (1.37 − 0.792i)2-s + (4.54 + 2.62i)3-s + (−2.74 + 4.75i)4-s + 8.31·6-s + (17.8 + 5.10i)7-s + 21.3i·8-s + (0.242 + 0.420i)9-s + (−14.0 + 24.3i)11-s + (−24.9 + 14.3i)12-s − 3.85i·13-s + (28.4 − 7.10i)14-s + (−4.98 − 8.63i)16-s + (33.2 + 19.1i)17-s + (0.666 + 0.384i)18-s + (58.3 + 101. i)19-s + ⋯ |
L(s) = 1 | + (0.485 − 0.280i)2-s + (0.873 + 0.504i)3-s + (−0.342 + 0.593i)4-s + 0.565·6-s + (0.961 + 0.275i)7-s + 0.945i·8-s + (0.00898 + 0.0155i)9-s + (−0.385 + 0.668i)11-s + (−0.599 + 0.345i)12-s − 0.0823i·13-s + (0.544 − 0.135i)14-s + (−0.0778 − 0.134i)16-s + (0.474 + 0.273i)17-s + (0.00872 + 0.00503i)18-s + (0.704 + 1.22i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.391 - 0.920i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.391 - 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.27927 + 1.50657i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.27927 + 1.50657i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-17.8 - 5.10i)T \) |
good | 2 | \( 1 + (-1.37 + 0.792i)T + (4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (-4.54 - 2.62i)T + (13.5 + 23.3i)T^{2} \) |
| 11 | \( 1 + (14.0 - 24.3i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 3.85iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-33.2 - 19.1i)T + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-58.3 - 101. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (152. - 88.2i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 209.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-103. + 179. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-13.5 + 7.83i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 10.5T + 6.89e4T^{2} \) |
| 43 | \( 1 + 325. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (-163. + 94.2i)T + (5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-238. - 137. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-21.9 + 37.9i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (427. + 740. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (472. + 272. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 1.02e3T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-218. - 126. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (461. + 799. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 960. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (66.6 + 115. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.02e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19776214090870061611260648517, −11.89524539170641555814294146432, −10.34819233633807527062174821556, −9.381653907995503172218134379889, −8.182572900003667010566216623677, −7.81849801858679977144026040333, −5.66408049851166994678336979841, −4.44657389759900781229885196989, −3.49317070162148028743768000800, −2.17142415664763979969266511036,
1.07645672034891283059352257046, 2.77984834948785585312412548276, 4.45762632590269416334745843534, 5.46634607128395574137785395737, 6.84996749295681751455424504315, 8.002588325499214794026992393198, 8.758053226831317174576573880616, 10.05502089131653328297126720467, 11.05521058695858773422783186979, 12.30761325856879038847415801342