L(s) = 1 | + (−0.197 − 0.113i)2-s + (−1.56 + 0.904i)3-s + (−3.97 − 6.88i)4-s + 0.411·6-s + (16.6 − 8.20i)7-s + 3.62i·8-s + (−11.8 + 20.5i)9-s + (−8.85 − 15.3i)11-s + (12.4 + 7.18i)12-s − 62.3i·13-s + (−4.20 − 0.271i)14-s + (−31.3 + 54.3i)16-s + (−75.4 + 43.5i)17-s + (4.67 − 2.69i)18-s + (−50.8 + 88.0i)19-s + ⋯ |
L(s) = 1 | + (−0.0696 − 0.0402i)2-s + (−0.301 + 0.174i)3-s + (−0.496 − 0.860i)4-s + 0.0279·6-s + (0.896 − 0.443i)7-s + 0.160i·8-s + (−0.439 + 0.761i)9-s + (−0.242 − 0.420i)11-s + (0.299 + 0.172i)12-s − 1.32i·13-s + (−0.0802 − 0.00518i)14-s + (−0.490 + 0.849i)16-s + (−1.07 + 0.621i)17-s + (0.0612 − 0.0353i)18-s + (−0.614 + 1.06i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0610i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0610i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.00831033 + 0.271791i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00831033 + 0.271791i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-16.6 + 8.20i)T \) |
good | 2 | \( 1 + (0.197 + 0.113i)T + (4 + 6.92i)T^{2} \) |
| 3 | \( 1 + (1.56 - 0.904i)T + (13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (8.85 + 15.3i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 62.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (75.4 - 43.5i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (50.8 - 88.0i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (81.0 + 46.8i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 297.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (45.6 + 79.0i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-243. - 140. i)T + (2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 271.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 7.81iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (80.0 + 46.2i)T + (5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-156. + 90.1i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (49.8 + 86.3i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (217. - 376. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-399. + 230. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 518.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (470. - 271. i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-119. + 207. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 299. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-527. + 913. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 288. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.34163163057838496505072318789, −10.72480885895276429498284767172, −10.06449991486838167233863279971, −8.531264938171025100589657001510, −7.893076968487823862382671122412, −6.04117268011339289093362385664, −5.27727765193580942713276935009, −4.12977962733413188062955304589, −1.92409026784255476563088182352, −0.12638435182437419274658111057,
2.22707201202525880712778956549, 4.00692373004389558715164359521, 5.05584871399399048433458150997, 6.60627048329905963964686922626, 7.60849460894682171937023871611, 8.904636113097245755696633767497, 9.286358992909052946453449124354, 11.25223379992738385490454968611, 11.65448070777578219811512262695, 12.67212072192751202940780049356