Properties

Label 2-175-35.9-c3-0-27
Degree 22
Conductor 175175
Sign 0.9980.0610i-0.998 - 0.0610i
Analytic cond. 10.325310.3253
Root an. cond. 3.213303.21330
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.197 − 0.113i)2-s + (−1.56 + 0.904i)3-s + (−3.97 − 6.88i)4-s + 0.411·6-s + (16.6 − 8.20i)7-s + 3.62i·8-s + (−11.8 + 20.5i)9-s + (−8.85 − 15.3i)11-s + (12.4 + 7.18i)12-s − 62.3i·13-s + (−4.20 − 0.271i)14-s + (−31.3 + 54.3i)16-s + (−75.4 + 43.5i)17-s + (4.67 − 2.69i)18-s + (−50.8 + 88.0i)19-s + ⋯
L(s)  = 1  + (−0.0696 − 0.0402i)2-s + (−0.301 + 0.174i)3-s + (−0.496 − 0.860i)4-s + 0.0279·6-s + (0.896 − 0.443i)7-s + 0.160i·8-s + (−0.439 + 0.761i)9-s + (−0.242 − 0.420i)11-s + (0.299 + 0.172i)12-s − 1.32i·13-s + (−0.0802 − 0.00518i)14-s + (−0.490 + 0.849i)16-s + (−1.07 + 0.621i)17-s + (0.0612 − 0.0353i)18-s + (−0.614 + 1.06i)19-s + ⋯

Functional equation

Λ(s)=(175s/2ΓC(s)L(s)=((0.9980.0610i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0610i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(175s/2ΓC(s+3/2)L(s)=((0.9980.0610i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0610i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 175175    =    5275^{2} \cdot 7
Sign: 0.9980.0610i-0.998 - 0.0610i
Analytic conductor: 10.325310.3253
Root analytic conductor: 3.213303.21330
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ175(149,)\chi_{175} (149, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 175, ( :3/2), 0.9980.0610i)(2,\ 175,\ (\ :3/2),\ -0.998 - 0.0610i)

Particular Values

L(2)L(2) \approx 0.00831033+0.271791i0.00831033 + 0.271791i
L(12)L(\frac12) \approx 0.00831033+0.271791i0.00831033 + 0.271791i
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
7 1+(16.6+8.20i)T 1 + (-16.6 + 8.20i)T
good2 1+(0.197+0.113i)T+(4+6.92i)T2 1 + (0.197 + 0.113i)T + (4 + 6.92i)T^{2}
3 1+(1.560.904i)T+(13.523.3i)T2 1 + (1.56 - 0.904i)T + (13.5 - 23.3i)T^{2}
11 1+(8.85+15.3i)T+(665.5+1.15e3i)T2 1 + (8.85 + 15.3i)T + (-665.5 + 1.15e3i)T^{2}
13 1+62.3iT2.19e3T2 1 + 62.3iT - 2.19e3T^{2}
17 1+(75.443.5i)T+(2.45e34.25e3i)T2 1 + (75.4 - 43.5i)T + (2.45e3 - 4.25e3i)T^{2}
19 1+(50.888.0i)T+(3.42e35.94e3i)T2 1 + (50.8 - 88.0i)T + (-3.42e3 - 5.94e3i)T^{2}
23 1+(81.0+46.8i)T+(6.08e3+1.05e4i)T2 1 + (81.0 + 46.8i)T + (6.08e3 + 1.05e4i)T^{2}
29 1+297.T+2.43e4T2 1 + 297.T + 2.43e4T^{2}
31 1+(45.6+79.0i)T+(1.48e4+2.57e4i)T2 1 + (45.6 + 79.0i)T + (-1.48e4 + 2.57e4i)T^{2}
37 1+(243.140.i)T+(2.53e4+4.38e4i)T2 1 + (-243. - 140. i)T + (2.53e4 + 4.38e4i)T^{2}
41 1+271.T+6.89e4T2 1 + 271.T + 6.89e4T^{2}
43 1+7.81iT7.95e4T2 1 + 7.81iT - 7.95e4T^{2}
47 1+(80.0+46.2i)T+(5.19e4+8.99e4i)T2 1 + (80.0 + 46.2i)T + (5.19e4 + 8.99e4i)T^{2}
53 1+(156.+90.1i)T+(7.44e41.28e5i)T2 1 + (-156. + 90.1i)T + (7.44e4 - 1.28e5i)T^{2}
59 1+(49.8+86.3i)T+(1.02e5+1.77e5i)T2 1 + (49.8 + 86.3i)T + (-1.02e5 + 1.77e5i)T^{2}
61 1+(217.376.i)T+(1.13e51.96e5i)T2 1 + (217. - 376. i)T + (-1.13e5 - 1.96e5i)T^{2}
67 1+(399.+230.i)T+(1.50e52.60e5i)T2 1 + (-399. + 230. i)T + (1.50e5 - 2.60e5i)T^{2}
71 1518.T+3.57e5T2 1 - 518.T + 3.57e5T^{2}
73 1+(470.271.i)T+(1.94e53.36e5i)T2 1 + (470. - 271. i)T + (1.94e5 - 3.36e5i)T^{2}
79 1+(119.+207.i)T+(2.46e54.26e5i)T2 1 + (-119. + 207. i)T + (-2.46e5 - 4.26e5i)T^{2}
83 1299.iT5.71e5T2 1 - 299. iT - 5.71e5T^{2}
89 1+(527.+913.i)T+(3.52e56.10e5i)T2 1 + (-527. + 913. i)T + (-3.52e5 - 6.10e5i)T^{2}
97 1+288.iT9.12e5T2 1 + 288. iT - 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.34163163057838496505072318789, −10.72480885895276429498284767172, −10.06449991486838167233863279971, −8.531264938171025100589657001510, −7.893076968487823862382671122412, −6.04117268011339289093362385664, −5.27727765193580942713276935009, −4.12977962733413188062955304589, −1.92409026784255476563088182352, −0.12638435182437419274658111057, 2.22707201202525880712778956549, 4.00692373004389558715164359521, 5.05584871399399048433458150997, 6.60627048329905963964686922626, 7.60849460894682171937023871611, 8.904636113097245755696633767497, 9.286358992909052946453449124354, 11.25223379992738385490454968611, 11.65448070777578219811512262695, 12.67212072192751202940780049356

Graph of the ZZ-function along the critical line