Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [175,4,Mod(74,175)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(175, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 4]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("175.74");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 175.k (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 35) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
74.1 |
|
−4.50647 | + | 2.60181i | −4.24917 | − | 2.45326i | 9.53885 | − | 16.5218i | 0 | 25.5317 | −4.23212 | + | 18.0302i | 57.6442i | −1.46305 | − | 2.53407i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74.2 | −4.35203 | + | 2.51265i | −7.22596 | − | 4.17191i | 8.62677 | − | 14.9420i | 0 | 41.9301 | 7.81984 | − | 16.7884i | 46.5017i | 21.3097 | + | 36.9094i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74.3 | −3.33093 | + | 1.92311i | 7.76647 | + | 4.48397i | 3.39672 | − | 5.88330i | 0 | −34.4927 | 13.8005 | − | 12.3509i | − | 4.64067i | 26.7120 | + | 46.2666i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74.4 | −2.42233 | + | 1.39853i | 5.38134 | + | 3.10692i | −0.0882227 | + | 0.152806i | 0 | −17.3805 | −7.92622 | − | 16.7384i | − | 22.8700i | 5.80586 | + | 10.0560i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74.5 | −0.197018 | + | 0.113749i | −1.56628 | − | 0.904291i | −3.97412 | + | 6.88338i | 0 | 0.411448 | 16.6030 | + | 8.20612i | − | 3.62818i | −11.8645 | − | 20.5499i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74.6 | 0.197018 | − | 0.113749i | 1.56628 | + | 0.904291i | −3.97412 | + | 6.88338i | 0 | 0.411448 | −16.6030 | − | 8.20612i | 3.62818i | −11.8645 | − | 20.5499i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74.7 | 2.42233 | − | 1.39853i | −5.38134 | − | 3.10692i | −0.0882227 | + | 0.152806i | 0 | −17.3805 | 7.92622 | + | 16.7384i | 22.8700i | 5.80586 | + | 10.0560i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74.8 | 3.33093 | − | 1.92311i | −7.76647 | − | 4.48397i | 3.39672 | − | 5.88330i | 0 | −34.4927 | −13.8005 | + | 12.3509i | 4.64067i | 26.7120 | + | 46.2666i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74.9 | 4.35203 | − | 2.51265i | 7.22596 | + | 4.17191i | 8.62677 | − | 14.9420i | 0 | 41.9301 | −7.81984 | + | 16.7884i | − | 46.5017i | 21.3097 | + | 36.9094i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74.10 | 4.50647 | − | 2.60181i | 4.24917 | + | 2.45326i | 9.53885 | − | 16.5218i | 0 | 25.5317 | 4.23212 | − | 18.0302i | − | 57.6442i | −1.46305 | − | 2.53407i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.1 | −4.50647 | − | 2.60181i | −4.24917 | + | 2.45326i | 9.53885 | + | 16.5218i | 0 | 25.5317 | −4.23212 | − | 18.0302i | − | 57.6442i | −1.46305 | + | 2.53407i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.2 | −4.35203 | − | 2.51265i | −7.22596 | + | 4.17191i | 8.62677 | + | 14.9420i | 0 | 41.9301 | 7.81984 | + | 16.7884i | − | 46.5017i | 21.3097 | − | 36.9094i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.3 | −3.33093 | − | 1.92311i | 7.76647 | − | 4.48397i | 3.39672 | + | 5.88330i | 0 | −34.4927 | 13.8005 | + | 12.3509i | 4.64067i | 26.7120 | − | 46.2666i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.4 | −2.42233 | − | 1.39853i | 5.38134 | − | 3.10692i | −0.0882227 | − | 0.152806i | 0 | −17.3805 | −7.92622 | + | 16.7384i | 22.8700i | 5.80586 | − | 10.0560i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.5 | −0.197018 | − | 0.113749i | −1.56628 | + | 0.904291i | −3.97412 | − | 6.88338i | 0 | 0.411448 | 16.6030 | − | 8.20612i | 3.62818i | −11.8645 | + | 20.5499i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.6 | 0.197018 | + | 0.113749i | 1.56628 | − | 0.904291i | −3.97412 | − | 6.88338i | 0 | 0.411448 | −16.6030 | + | 8.20612i | − | 3.62818i | −11.8645 | + | 20.5499i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.7 | 2.42233 | + | 1.39853i | −5.38134 | + | 3.10692i | −0.0882227 | − | 0.152806i | 0 | −17.3805 | 7.92622 | − | 16.7384i | − | 22.8700i | 5.80586 | − | 10.0560i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.8 | 3.33093 | + | 1.92311i | −7.76647 | + | 4.48397i | 3.39672 | + | 5.88330i | 0 | −34.4927 | −13.8005 | − | 12.3509i | − | 4.64067i | 26.7120 | − | 46.2666i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.9 | 4.35203 | + | 2.51265i | 7.22596 | − | 4.17191i | 8.62677 | + | 14.9420i | 0 | 41.9301 | −7.81984 | − | 16.7884i | 46.5017i | 21.3097 | − | 36.9094i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.10 | 4.50647 | + | 2.60181i | 4.24917 | − | 2.45326i | 9.53885 | + | 16.5218i | 0 | 25.5317 | 4.23212 | + | 18.0302i | 57.6442i | −1.46305 | + | 2.53407i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
35.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 175.4.k.d | 20 | |
5.b | even | 2 | 1 | inner | 175.4.k.d | 20 | |
5.c | odd | 4 | 1 | 35.4.e.c | ✓ | 10 | |
5.c | odd | 4 | 1 | 175.4.e.d | 10 | ||
7.c | even | 3 | 1 | inner | 175.4.k.d | 20 | |
15.e | even | 4 | 1 | 315.4.j.g | 10 | ||
20.e | even | 4 | 1 | 560.4.q.n | 10 | ||
35.f | even | 4 | 1 | 245.4.e.o | 10 | ||
35.j | even | 6 | 1 | inner | 175.4.k.d | 20 | |
35.k | even | 12 | 1 | 245.4.a.n | 5 | ||
35.k | even | 12 | 1 | 245.4.e.o | 10 | ||
35.k | even | 12 | 1 | 1225.4.a.bf | 5 | ||
35.l | odd | 12 | 1 | 35.4.e.c | ✓ | 10 | |
35.l | odd | 12 | 1 | 175.4.e.d | 10 | ||
35.l | odd | 12 | 1 | 245.4.a.m | 5 | ||
35.l | odd | 12 | 1 | 1225.4.a.bg | 5 | ||
105.w | odd | 12 | 1 | 2205.4.a.bt | 5 | ||
105.x | even | 12 | 1 | 315.4.j.g | 10 | ||
105.x | even | 12 | 1 | 2205.4.a.bu | 5 | ||
140.w | even | 12 | 1 | 560.4.q.n | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.4.e.c | ✓ | 10 | 5.c | odd | 4 | 1 | |
35.4.e.c | ✓ | 10 | 35.l | odd | 12 | 1 | |
175.4.e.d | 10 | 5.c | odd | 4 | 1 | ||
175.4.e.d | 10 | 35.l | odd | 12 | 1 | ||
175.4.k.d | 20 | 1.a | even | 1 | 1 | trivial | |
175.4.k.d | 20 | 5.b | even | 2 | 1 | inner | |
175.4.k.d | 20 | 7.c | even | 3 | 1 | inner | |
175.4.k.d | 20 | 35.j | even | 6 | 1 | inner | |
245.4.a.m | 5 | 35.l | odd | 12 | 1 | ||
245.4.a.n | 5 | 35.k | even | 12 | 1 | ||
245.4.e.o | 10 | 35.f | even | 4 | 1 | ||
245.4.e.o | 10 | 35.k | even | 12 | 1 | ||
315.4.j.g | 10 | 15.e | even | 4 | 1 | ||
315.4.j.g | 10 | 105.x | even | 12 | 1 | ||
560.4.q.n | 10 | 20.e | even | 4 | 1 | ||
560.4.q.n | 10 | 140.w | even | 12 | 1 | ||
1225.4.a.bf | 5 | 35.k | even | 12 | 1 | ||
1225.4.a.bg | 5 | 35.l | odd | 12 | 1 | ||
2205.4.a.bt | 5 | 105.w | odd | 12 | 1 | ||
2205.4.a.bu | 5 | 105.x | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .