Properties

Label 175.4.k.d
Level 175175
Weight 44
Character orbit 175.k
Analytic conductor 10.32510.325
Analytic rank 00
Dimension 2020
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(74,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.74");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 175.k (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.325334251010.3253342510
Analytic rank: 00
Dimension: 2020
Relative dimension: 1010 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2075x18+3638x16105775x14+2246038x1230934571x10+307864753x8++16777216 x^{20} - 75 x^{18} + 3638 x^{16} - 105775 x^{14} + 2246038 x^{12} - 30934571 x^{10} + 307864753 x^{8} + \cdots + 16777216 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 220 2^{20}
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β14+β1)q2+(β8+β6)q3+(β127β7+7)q4+(β10+β9+β4++3)q6+(β17+4β15+β1)q7++(15β10+15β9++6)q99+O(q100) q + ( - \beta_{14} + \beta_1) q^{2} + (\beta_{8} + \beta_{6}) q^{3} + ( - \beta_{12} - 7 \beta_{7} + 7) q^{4} + ( - \beta_{10} + \beta_{9} + \beta_{4} + \cdots + 3) q^{6} + (\beta_{17} + 4 \beta_{15} + \cdots - \beta_1) q^{7}+ \cdots + ( - 15 \beta_{10} + 15 \beta_{9} + \cdots + 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+70q4+64q6+162q994q1114q14342q1642q19+356q21+1696q24+94q26760q29776q31520q34+4916q36+28q391124q41+140q99+O(q100) 20 q + 70 q^{4} + 64 q^{6} + 162 q^{9} - 94 q^{11} - 14 q^{14} - 342 q^{16} - 42 q^{19} + 356 q^{21} + 1696 q^{24} + 94 q^{26} - 760 q^{29} - 776 q^{31} - 520 q^{34} + 4916 q^{36} + 28 q^{39} - 1124 q^{41}+ \cdots - 140 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x2075x18+3638x16105775x14+2246038x1230934571x10+307864753x8++16777216 x^{20} - 75 x^{18} + 3638 x^{16} - 105775 x^{14} + 2246038 x^{12} - 30934571 x^{10} + 307864753 x^{8} + \cdots + 16777216 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (47 ⁣ ⁣27ν18+25 ⁣ ⁣16)/17 ⁣ ⁣80 ( - 47\!\cdots\!27 \nu^{18} + \cdots - 25\!\cdots\!16 ) / 17\!\cdots\!80 Copy content Toggle raw display
β3\beta_{3}== (29 ⁣ ⁣47ν18+37 ⁣ ⁣64)/82 ⁣ ⁣40 ( 29\!\cdots\!47 \nu^{18} + \cdots - 37\!\cdots\!64 ) / 82\!\cdots\!40 Copy content Toggle raw display
β4\beta_{4}== (32 ⁣ ⁣31ν18+20 ⁣ ⁣84)/33 ⁣ ⁣60 ( - 32\!\cdots\!31 \nu^{18} + \cdots - 20\!\cdots\!84 ) / 33\!\cdots\!60 Copy content Toggle raw display
β5\beta_{5}== (3217726829ν18235003656367ν16+11151370466878ν14+82 ⁣ ⁣52)/17 ⁣ ⁣20 ( 3217726829 \nu^{18} - 235003656367 \nu^{16} + 11151370466878 \nu^{14} + \cdots - 82\!\cdots\!52 ) / 17\!\cdots\!20 Copy content Toggle raw display
β6\beta_{6}== (62 ⁣ ⁣59ν19+52 ⁣ ⁣24ν)/62 ⁣ ⁣60 ( 62\!\cdots\!59 \nu^{19} + \cdots - 52\!\cdots\!24 \nu ) / 62\!\cdots\!60 Copy content Toggle raw display
β7\beta_{7}== (17 ⁣ ⁣93ν18+77 ⁣ ⁣68)/55 ⁣ ⁣60 ( 17\!\cdots\!93 \nu^{18} + \cdots - 77\!\cdots\!68 ) / 55\!\cdots\!60 Copy content Toggle raw display
β8\beta_{8}== (18 ⁣ ⁣75ν19++46 ⁣ ⁣48ν)/52 ⁣ ⁣60 ( 18\!\cdots\!75 \nu^{19} + \cdots + 46\!\cdots\!48 \nu ) / 52\!\cdots\!60 Copy content Toggle raw display
β9\beta_{9}== (10 ⁣ ⁣37ν18++74 ⁣ ⁣44)/41 ⁣ ⁣20 ( - 10\!\cdots\!37 \nu^{18} + \cdots + 74\!\cdots\!44 ) / 41\!\cdots\!20 Copy content Toggle raw display
β10\beta_{10}== (91 ⁣ ⁣37ν18+30 ⁣ ⁣88)/33 ⁣ ⁣60 ( - 91\!\cdots\!37 \nu^{18} + \cdots - 30\!\cdots\!88 ) / 33\!\cdots\!60 Copy content Toggle raw display
β11\beta_{11}== (94 ⁣ ⁣07ν18+27 ⁣ ⁣92)/33 ⁣ ⁣60 ( - 94\!\cdots\!07 \nu^{18} + \cdots - 27\!\cdots\!92 ) / 33\!\cdots\!60 Copy content Toggle raw display
β12\beta_{12}== (25 ⁣ ⁣31ν18++83 ⁣ ⁣32)/55 ⁣ ⁣60 ( - 25\!\cdots\!31 \nu^{18} + \cdots + 83\!\cdots\!32 ) / 55\!\cdots\!60 Copy content Toggle raw display
β13\beta_{13}== (28 ⁣ ⁣41ν19++90 ⁣ ⁣24ν)/10 ⁣ ⁣20 ( - 28\!\cdots\!41 \nu^{19} + \cdots + 90\!\cdots\!24 \nu ) / 10\!\cdots\!20 Copy content Toggle raw display
β14\beta_{14}== (17 ⁣ ⁣93ν19+77 ⁣ ⁣68ν)/55 ⁣ ⁣60 ( 17\!\cdots\!93 \nu^{19} + \cdots - 77\!\cdots\!68 \nu ) / 55\!\cdots\!60 Copy content Toggle raw display
β15\beta_{15}== (1570085297079ν19117653430022397ν17+70 ⁣ ⁣52ν)/57 ⁣ ⁣40 ( 1570085297079 \nu^{19} - 117653430022397 \nu^{17} + \cdots - 70\!\cdots\!52 \nu ) / 57\!\cdots\!40 Copy content Toggle raw display
β16\beta_{16}== (50 ⁣ ⁣73ν19++56 ⁣ ⁣76ν)/52 ⁣ ⁣60 ( - 50\!\cdots\!73 \nu^{19} + \cdots + 56\!\cdots\!76 \nu ) / 52\!\cdots\!60 Copy content Toggle raw display
β17\beta_{17}== (10 ⁣ ⁣19ν19+78 ⁣ ⁣12ν)/10 ⁣ ⁣20 ( - 10\!\cdots\!19 \nu^{19} + \cdots - 78\!\cdots\!12 \nu ) / 10\!\cdots\!20 Copy content Toggle raw display
β18\beta_{18}== (12 ⁣ ⁣23ν19++56 ⁣ ⁣00ν)/52 ⁣ ⁣60 ( - 12\!\cdots\!23 \nu^{19} + \cdots + 56\!\cdots\!00 \nu ) / 52\!\cdots\!60 Copy content Toggle raw display
β19\beta_{19}== (82 ⁣ ⁣55ν19+10 ⁣ ⁣72ν)/35 ⁣ ⁣40 ( - 82\!\cdots\!55 \nu^{19} + \cdots - 10\!\cdots\!72 \nu ) / 35\!\cdots\!40 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β12+15β7+β2 \beta_{12} + 15\beta_{7} + \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β15+21β14+4β13+4β6 -2\beta_{15} + 21\beta_{14} + 4\beta_{13} + 4\beta_{6} Copy content Toggle raw display
ν4\nu^{4}== 29β124β118β9+331β72β54β4327 29\beta_{12} - 4\beta_{11} - 8\beta_{9} + 331\beta_{7} - 2\beta_{5} - 4\beta_{4} - 327 Copy content Toggle raw display
ν5\nu^{5}== 4β192β186β172β1654β15+491β14+491β1 4 \beta_{19} - 2 \beta_{18} - 6 \beta_{17} - 2 \beta_{16} - 54 \beta_{15} + 491 \beta_{14} + \cdots - 491 \beta_1 Copy content Toggle raw display
ν6\nu^{6}== 152β10152β9184β468β3793β27823 152\beta_{10} - 152\beta_{9} - 184\beta_{4} - 68\beta_{3} - 793\beta_{2} - 7823 Copy content Toggle raw display
ν7\nu^{7}== 316β19316β18216β17+216β16+1498β84288β612129β1 316\beta_{19} - 316\beta_{18} - 216\beta_{17} + 216\beta_{16} + 1498\beta_{8} - 4288\beta_{6} - 12129\beta_1 Copy content Toggle raw display
ν8\nu^{8}== 21237β12+6300β11+2908β10+4604β9198787β7+1696 - 21237 \beta_{12} + 6300 \beta_{11} + 2908 \beta_{10} + 4604 \beta_{9} - 198787 \beta_{7} + \cdots - 1696 Copy content Toggle raw display
ν9\nu^{9}== 3910β197996β18+3910β17+11906β16+46638β15+117870β6 3910 \beta_{19} - 7996 \beta_{18} + 3910 \beta_{17} + 11906 \beta_{16} + 46638 \beta_{15} + \cdots - 117870 \beta_{6} Copy content Toggle raw display
ν10\nu^{10}== 563953β12+193392β1163616β10+259552β95084415β7++4954639 - 563953 \beta_{12} + 193392 \beta_{11} - 63616 \beta_{10} + 259552 \beta_{9} - 5084415 \beta_{7} + \cdots + 4954639 Copy content Toggle raw display
ν11\nu^{11}== 257008β19+137800β18+394808β17+137800β16+1528562β15++7959597β1 - 257008 \beta_{19} + 137800 \beta_{18} + 394808 \beta_{17} + 137800 \beta_{16} + 1528562 \beta_{15} + \cdots + 7959597 \beta_1 Copy content Toggle raw display
ν12\nu^{12}== 3551028β10+3551028β9+5644276β4+2474570β3+14923853β2+130147655 -3551028\beta_{10} + 3551028\beta_{9} + 5644276\beta_{4} + 2474570\beta_{3} + 14923853\beta_{2} + 130147655 Copy content Toggle raw display
ν13\nu^{13}== 12305342β19+12305342β18+7737524β177737524β16++207325763β1 - 12305342 \beta_{19} + 12305342 \beta_{18} + 7737524 \beta_{17} - 7737524 \beta_{16} + \cdots + 207325763 \beta_1 Copy content Toggle raw display
ν14\nu^{14}== 394440265β12160537576β1131144744β1095841160β9+3430326263β7++64696416 394440265 \beta_{12} - 160537576 \beta_{11} - 31144744 \beta_{10} - 95841160 \beta_{9} + 3430326263 \beta_{7} + \cdots + 64696416 Copy content Toggle raw display
ν15\nu^{15}== 145314092β19+225233992β18145314092β17370548084β16++2199176248β6 - 145314092 \beta_{19} + 225233992 \beta_{18} - 145314092 \beta_{17} - 370548084 \beta_{16} + \cdots + 2199176248 \beta_{6} Copy content Toggle raw display
ν16\nu^{16}== 10423659045β124502384652β11+1932660320β105139448664β9+87233905479 10423659045 \beta_{12} - 4502384652 \beta_{11} + 1932660320 \beta_{10} - 5139448664 \beta_{9} + \cdots - 87233905479 Copy content Toggle raw display
ν17\nu^{17}== 6435044972β194488836174β1810923881146β174488836174β16+142690202287β1 6435044972 \beta_{19} - 4488836174 \beta_{18} - 10923881146 \beta_{17} - 4488836174 \beta_{16} + \cdots - 142690202287 \beta_1 Copy content Toggle raw display
ν18\nu^{18}== 68687475808β1068687475808β9125253090336β479093800528β3+2345819043151 68687475808 \beta_{10} - 68687475808 \beta_{9} - 125253090336 \beta_{4} - 79093800528 \beta_{3} + \cdots - 2345819043151 Copy content Toggle raw display
ν19\nu^{19}== 317478119920β19317478119920β18181818704864β17+181818704864β16+3759177093573β1 317478119920 \beta_{19} - 317478119920 \beta_{18} - 181818704864 \beta_{17} + 181818704864 \beta_{16} + \cdots - 3759177093573 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) β7-\beta_{7} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
74.1
−4.50647 2.60181i
−4.35203 2.51265i
−3.33093 1.92311i
−2.42233 1.39853i
−0.197018 0.113749i
0.197018 + 0.113749i
2.42233 + 1.39853i
3.33093 + 1.92311i
4.35203 + 2.51265i
4.50647 + 2.60181i
−4.50647 + 2.60181i
−4.35203 + 2.51265i
−3.33093 + 1.92311i
−2.42233 + 1.39853i
−0.197018 + 0.113749i
0.197018 0.113749i
2.42233 1.39853i
3.33093 1.92311i
4.35203 2.51265i
4.50647 2.60181i
−4.50647 + 2.60181i −4.24917 2.45326i 9.53885 16.5218i 0 25.5317 −4.23212 + 18.0302i 57.6442i −1.46305 2.53407i 0
74.2 −4.35203 + 2.51265i −7.22596 4.17191i 8.62677 14.9420i 0 41.9301 7.81984 16.7884i 46.5017i 21.3097 + 36.9094i 0
74.3 −3.33093 + 1.92311i 7.76647 + 4.48397i 3.39672 5.88330i 0 −34.4927 13.8005 12.3509i 4.64067i 26.7120 + 46.2666i 0
74.4 −2.42233 + 1.39853i 5.38134 + 3.10692i −0.0882227 + 0.152806i 0 −17.3805 −7.92622 16.7384i 22.8700i 5.80586 + 10.0560i 0
74.5 −0.197018 + 0.113749i −1.56628 0.904291i −3.97412 + 6.88338i 0 0.411448 16.6030 + 8.20612i 3.62818i −11.8645 20.5499i 0
74.6 0.197018 0.113749i 1.56628 + 0.904291i −3.97412 + 6.88338i 0 0.411448 −16.6030 8.20612i 3.62818i −11.8645 20.5499i 0
74.7 2.42233 1.39853i −5.38134 3.10692i −0.0882227 + 0.152806i 0 −17.3805 7.92622 + 16.7384i 22.8700i 5.80586 + 10.0560i 0
74.8 3.33093 1.92311i −7.76647 4.48397i 3.39672 5.88330i 0 −34.4927 −13.8005 + 12.3509i 4.64067i 26.7120 + 46.2666i 0
74.9 4.35203 2.51265i 7.22596 + 4.17191i 8.62677 14.9420i 0 41.9301 −7.81984 + 16.7884i 46.5017i 21.3097 + 36.9094i 0
74.10 4.50647 2.60181i 4.24917 + 2.45326i 9.53885 16.5218i 0 25.5317 4.23212 18.0302i 57.6442i −1.46305 2.53407i 0
149.1 −4.50647 2.60181i −4.24917 + 2.45326i 9.53885 + 16.5218i 0 25.5317 −4.23212 18.0302i 57.6442i −1.46305 + 2.53407i 0
149.2 −4.35203 2.51265i −7.22596 + 4.17191i 8.62677 + 14.9420i 0 41.9301 7.81984 + 16.7884i 46.5017i 21.3097 36.9094i 0
149.3 −3.33093 1.92311i 7.76647 4.48397i 3.39672 + 5.88330i 0 −34.4927 13.8005 + 12.3509i 4.64067i 26.7120 46.2666i 0
149.4 −2.42233 1.39853i 5.38134 3.10692i −0.0882227 0.152806i 0 −17.3805 −7.92622 + 16.7384i 22.8700i 5.80586 10.0560i 0
149.5 −0.197018 0.113749i −1.56628 + 0.904291i −3.97412 6.88338i 0 0.411448 16.6030 8.20612i 3.62818i −11.8645 + 20.5499i 0
149.6 0.197018 + 0.113749i 1.56628 0.904291i −3.97412 6.88338i 0 0.411448 −16.6030 + 8.20612i 3.62818i −11.8645 + 20.5499i 0
149.7 2.42233 + 1.39853i −5.38134 + 3.10692i −0.0882227 0.152806i 0 −17.3805 7.92622 16.7384i 22.8700i 5.80586 10.0560i 0
149.8 3.33093 + 1.92311i −7.76647 + 4.48397i 3.39672 + 5.88330i 0 −34.4927 −13.8005 12.3509i 4.64067i 26.7120 46.2666i 0
149.9 4.35203 + 2.51265i 7.22596 4.17191i 8.62677 + 14.9420i 0 41.9301 −7.81984 16.7884i 46.5017i 21.3097 36.9094i 0
149.10 4.50647 + 2.60181i 4.24917 2.45326i 9.53885 + 16.5218i 0 25.5317 4.23212 + 18.0302i 57.6442i −1.46305 + 2.53407i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 74.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.4.k.d 20
5.b even 2 1 inner 175.4.k.d 20
5.c odd 4 1 35.4.e.c 10
5.c odd 4 1 175.4.e.d 10
7.c even 3 1 inner 175.4.k.d 20
15.e even 4 1 315.4.j.g 10
20.e even 4 1 560.4.q.n 10
35.f even 4 1 245.4.e.o 10
35.j even 6 1 inner 175.4.k.d 20
35.k even 12 1 245.4.a.n 5
35.k even 12 1 245.4.e.o 10
35.k even 12 1 1225.4.a.bf 5
35.l odd 12 1 35.4.e.c 10
35.l odd 12 1 175.4.e.d 10
35.l odd 12 1 245.4.a.m 5
35.l odd 12 1 1225.4.a.bg 5
105.w odd 12 1 2205.4.a.bt 5
105.x even 12 1 315.4.j.g 10
105.x even 12 1 2205.4.a.bu 5
140.w even 12 1 560.4.q.n 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.e.c 10 5.c odd 4 1
35.4.e.c 10 35.l odd 12 1
175.4.e.d 10 5.c odd 4 1
175.4.e.d 10 35.l odd 12 1
175.4.k.d 20 1.a even 1 1 trivial
175.4.k.d 20 5.b even 2 1 inner
175.4.k.d 20 7.c even 3 1 inner
175.4.k.d 20 35.j even 6 1 inner
245.4.a.m 5 35.l odd 12 1
245.4.a.n 5 35.k even 12 1
245.4.e.o 10 35.f even 4 1
245.4.e.o 10 35.k even 12 1
315.4.j.g 10 15.e even 4 1
315.4.j.g 10 105.x even 12 1
560.4.q.n 10 20.e even 4 1
560.4.q.n 10 140.w even 12 1
1225.4.a.bf 5 35.k even 12 1
1225.4.a.bg 5 35.l odd 12 1
2205.4.a.bt 5 105.w odd 12 1
2205.4.a.bu 5 105.x even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22075T218+3638T216105775T214+2246038T21230934571T210++16777216 T_{2}^{20} - 75 T_{2}^{18} + 3638 T_{2}^{16} - 105775 T_{2}^{14} + 2246038 T_{2}^{12} - 30934571 T_{2}^{10} + \cdots + 16777216 acting on S4new(175,[χ])S_{4}^{\mathrm{new}}(175, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2075T18++16777216 T^{20} - 75 T^{18} + \cdots + 16777216 Copy content Toggle raw display
33 T20++289812354063376 T^{20} + \cdots + 289812354063376 Copy content Toggle raw display
55 T20 T^{20} Copy content Toggle raw display
77 T20++22 ⁣ ⁣49 T^{20} + \cdots + 22\!\cdots\!49 Copy content Toggle raw display
1111 (T10++1044811065600)2 (T^{10} + \cdots + 1044811065600)^{2} Copy content Toggle raw display
1313 (T10++94 ⁣ ⁣16)2 (T^{10} + \cdots + 94\!\cdots\!16)^{2} Copy content Toggle raw display
1717 T20++12 ⁣ ⁣96 T^{20} + \cdots + 12\!\cdots\!96 Copy content Toggle raw display
1919 (T10++26 ⁣ ⁣36)2 (T^{10} + \cdots + 26\!\cdots\!36)^{2} Copy content Toggle raw display
2323 T20++15 ⁣ ⁣21 T^{20} + \cdots + 15\!\cdots\!21 Copy content Toggle raw display
2929 (T5+190T4++13190815450)4 (T^{5} + 190 T^{4} + \cdots + 13190815450)^{4} Copy content Toggle raw display
3131 (T10++63 ⁣ ⁣24)2 (T^{10} + \cdots + 63\!\cdots\!24)^{2} Copy content Toggle raw display
3737 T20++15 ⁣ ⁣00 T^{20} + \cdots + 15\!\cdots\!00 Copy content Toggle raw display
4141 (T5+281T4++77000100765)4 (T^{5} + 281 T^{4} + \cdots + 77000100765)^{4} Copy content Toggle raw display
4343 (T10++53 ⁣ ⁣64)2 (T^{10} + \cdots + 53\!\cdots\!64)^{2} Copy content Toggle raw display
4747 T20++20 ⁣ ⁣00 T^{20} + \cdots + 20\!\cdots\!00 Copy content Toggle raw display
5353 T20++60 ⁣ ⁣56 T^{20} + \cdots + 60\!\cdots\!56 Copy content Toggle raw display
5959 (T10++85 ⁣ ⁣00)2 (T^{10} + \cdots + 85\!\cdots\!00)^{2} Copy content Toggle raw display
6161 (T10++28 ⁣ ⁣56)2 (T^{10} + \cdots + 28\!\cdots\!56)^{2} Copy content Toggle raw display
6767 T20++86 ⁣ ⁣00 T^{20} + \cdots + 86\!\cdots\!00 Copy content Toggle raw display
7171 (T5++6439908260352)4 (T^{5} + \cdots + 6439908260352)^{4} Copy content Toggle raw display
7373 T20++68 ⁣ ⁣36 T^{20} + \cdots + 68\!\cdots\!36 Copy content Toggle raw display
7979 (T10++10 ⁣ ⁣76)2 (T^{10} + \cdots + 10\!\cdots\!76)^{2} Copy content Toggle raw display
8383 (T10++31 ⁣ ⁣44)2 (T^{10} + \cdots + 31\!\cdots\!44)^{2} Copy content Toggle raw display
8989 (T10++85 ⁣ ⁣56)2 (T^{10} + \cdots + 85\!\cdots\!56)^{2} Copy content Toggle raw display
9797 (T10++74 ⁣ ⁣44)2 (T^{10} + \cdots + 74\!\cdots\!44)^{2} Copy content Toggle raw display
show more
show less