L(s) = 1 | + (−2.42 + 1.39i)2-s + (5.38 + 3.10i)3-s + (−0.0882 + 0.152i)4-s − 17.3·6-s + (−7.92 − 16.7i)7-s − 22.8i·8-s + (5.80 + 10.0i)9-s + (24.8 − 42.9i)11-s + (−0.949 + 0.548i)12-s − 71.6i·13-s + (42.6 + 29.4i)14-s + (31.2 + 54.1i)16-s + (−40.0 − 23.1i)17-s + (−28.1 − 16.2i)18-s + (27.0 + 46.9i)19-s + ⋯ |
L(s) = 1 | + (−0.856 + 0.494i)2-s + (1.03 + 0.597i)3-s + (−0.0110 + 0.0191i)4-s − 1.18·6-s + (−0.427 − 0.903i)7-s − 1.01i·8-s + (0.215 + 0.372i)9-s + (0.679 − 1.17i)11-s + (−0.0228 + 0.0131i)12-s − 1.52i·13-s + (0.813 + 0.562i)14-s + (0.488 + 0.846i)16-s + (−0.572 − 0.330i)17-s + (−0.368 − 0.212i)18-s + (0.327 + 0.566i)19-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.820+0.571i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.820+0.571i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.820+0.571i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(74,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.820+0.571i)
|
Particular Values
L(2) |
≈ |
1.04137−0.326917i |
L(21) |
≈ |
1.04137−0.326917i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+(7.92+16.7i)T |
good | 2 | 1+(2.42−1.39i)T+(4−6.92i)T2 |
| 3 | 1+(−5.38−3.10i)T+(13.5+23.3i)T2 |
| 11 | 1+(−24.8+42.9i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+71.6iT−2.19e3T2 |
| 17 | 1+(40.0+23.1i)T+(2.45e3+4.25e3i)T2 |
| 19 | 1+(−27.0−46.9i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(132.−76.4i)T+(6.08e3−1.05e4i)T2 |
| 29 | 1−38.5T+2.43e4T2 |
| 31 | 1+(51.7−89.5i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(−46.3+26.7i)T+(2.53e4−4.38e4i)T2 |
| 41 | 1−40.4T+6.89e4T2 |
| 43 | 1+377.iT−7.95e4T2 |
| 47 | 1+(−337.+194.i)T+(5.19e4−8.99e4i)T2 |
| 53 | 1+(−284.−164.i)T+(7.44e4+1.28e5i)T2 |
| 59 | 1+(19.8−34.3i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(98.7+171.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(841.+486.i)T+(1.50e5+2.60e5i)T2 |
| 71 | 1−386.T+3.57e5T2 |
| 73 | 1+(190.+109.i)T+(1.94e5+3.36e5i)T2 |
| 79 | 1+(193.+334.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−1.37e3iT−5.71e5T2 |
| 89 | 1+(−375.−649.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−533.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.22400644923541565168431050869, −10.63397454676237434229369578269, −9.885343817495709011747747517997, −8.986817726548034749538304799036, −8.223481710278993677704422631561, −7.36622436226642801802918060813, −6.00100690718437909202993406462, −3.91094129665850077591893414453, −3.27660466179752971474590250894, −0.58732824258271721515219233850,
1.76099363407170064375023890682, 2.47437692783953506759059363422, 4.45343431312755568111561941574, 6.25815875801093544343095028571, 7.45131986349357209273433158127, 8.703786158737335618264603500074, 9.147116983431769715977763959801, 9.961801441303697699689679360567, 11.42296129316934903272609446112, 12.19561248207340615533418171016