L(s) = 1 | + 6.37·2-s + 24.6·4-s + 49·7-s + 54.9·8-s + 81·9-s − 6.98·11-s + 312.·14-s − 43.5·16-s + 516.·18-s − 44.5·22-s + 1.02e3·23-s + 1.20e3·28-s + 372.·29-s − 1.15e3·32-s + 1.99e3·36-s − 1.44e3·37-s − 3.02e3·43-s − 171.·44-s + 6.54e3·46-s + 2.40e3·49-s − 5.58e3·53-s + 2.69e3·56-s + 2.37e3·58-s + 3.96e3·63-s − 6.68e3·64-s − 8.96e3·67-s − 9.81e3·71-s + ⋯ |
L(s) = 1 | + 1.59·2-s + 1.53·4-s + 0.999·7-s + 0.859·8-s + 9-s − 0.0577·11-s + 1.59·14-s − 0.170·16-s + 1.59·18-s − 0.0919·22-s + 1.94·23-s + 1.53·28-s + 0.443·29-s − 1.13·32-s + 1.53·36-s − 1.05·37-s − 1.63·43-s − 0.0888·44-s + 3.09·46-s + 49-s − 1.98·53-s + 0.859·56-s + 0.706·58-s + 63-s − 1.63·64-s − 1.99·67-s − 1.94·71-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(5−s)
Λ(s)=(=(175s/2ΓC(s+2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
1
|
Analytic conductor: |
18.0897 |
Root analytic conductor: |
4.25320 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(76,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :2), 1)
|
Particular Values
L(25) |
≈ |
5.168570784 |
L(21) |
≈ |
5.168570784 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1−49T |
good | 2 | 1−6.37T+16T2 |
| 3 | 1−81T2 |
| 11 | 1+6.98T+1.46e4T2 |
| 13 | 1−2.85e4T2 |
| 17 | 1−8.35e4T2 |
| 19 | 1−1.30e5T2 |
| 23 | 1−1.02e3T+2.79e5T2 |
| 29 | 1−372.T+7.07e5T2 |
| 31 | 1−9.23e5T2 |
| 37 | 1+1.44e3T+1.87e6T2 |
| 41 | 1−2.82e6T2 |
| 43 | 1+3.02e3T+3.41e6T2 |
| 47 | 1−4.87e6T2 |
| 53 | 1+5.58e3T+7.89e6T2 |
| 59 | 1−1.21e7T2 |
| 61 | 1−1.38e7T2 |
| 67 | 1+8.96e3T+2.01e7T2 |
| 71 | 1+9.81e3T+2.54e7T2 |
| 73 | 1−2.83e7T2 |
| 79 | 1−1.21e4T+3.89e7T2 |
| 83 | 1−4.74e7T2 |
| 89 | 1−6.27e7T2 |
| 97 | 1−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.25686407516953938470389005056, −11.36042688538279057850055176477, −10.45169171331194748284752319263, −8.934189975192986807580554255720, −7.50328206096375990157342518413, −6.55530917650553745204314269291, −5.13417265281011461558069404304, −4.54185732078532777915831013045, −3.19501563042873379804720795473, −1.61020334298225034280974882349,
1.61020334298225034280974882349, 3.19501563042873379804720795473, 4.54185732078532777915831013045, 5.13417265281011461558069404304, 6.55530917650553745204314269291, 7.50328206096375990157342518413, 8.934189975192986807580554255720, 10.45169171331194748284752319263, 11.36042688538279057850055176477, 12.25686407516953938470389005056