gp: [N,k,chi] = [175,5,Mod(76,175)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(175, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 5, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("175.76");
S:= CuspForms(chi, 5);
N := Newforms(S);
Newform invariants
sage: traces = [2,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 1 2 ( 1 + 3 21 ) \beta = \frac{1}{2}(1 + 3\sqrt{21}) β = 2 1 ( 1 + 3 2 1 ) .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 175 Z ) × \left(\mathbb{Z}/175\mathbb{Z}\right)^\times ( Z / 1 7 5 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 2 + T 2 − 47 T_{2}^{2} + T_{2} - 47 T 2 2 + T 2 − 4 7
T2^2 + T2 - 47
acting on S 5 n e w ( 175 , [ χ ] ) S_{5}^{\mathrm{new}}(175, [\chi]) S 5 n e w ( 1 7 5 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + T − 47 T^{2} + T - 47 T 2 + T − 4 7
T^2 + T - 47
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
( T − 49 ) 2 (T - 49)^{2} ( T − 4 9 ) 2
(T - 49)^2
11 11 1 1
T 2 − 206 T − 1487 T^{2} - 206T - 1487 T 2 − 2 0 6 T − 1 4 8 7
T^2 - 206*T - 1487
13 13 1 3
T 2 T^{2} T 2
T^2
17 17 1 7
T 2 T^{2} T 2
T^2
19 19 1 9
T 2 T^{2} T 2
T^2
23 23 2 3
T 2 − 734 T − 300767 T^{2} - 734T - 300767 T 2 − 7 3 4 T − 3 0 0 7 6 7
T^2 - 734*T - 300767
29 29 2 9
T 2 + 1234 T − 599087 T^{2} + 1234 T - 599087 T 2 + 1 2 3 4 T − 5 9 9 0 8 7
T^2 + 1234*T - 599087
31 31 3 1
T 2 T^{2} T 2
T^2
37 37 3 7
T 2 − 1294 T − 3948047 T^{2} - 1294 T - 3948047 T 2 − 1 2 9 4 T − 3 9 4 8 0 4 7
T^2 - 1294*T - 3948047
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
T 2 − 334 T − 10144847 T^{2} - 334 T - 10144847 T 2 − 3 3 4 T − 1 0 1 4 4 8 4 7
T^2 - 334*T - 10144847
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
( T + 5582 ) 2 (T + 5582)^{2} ( T + 5 5 8 2 ) 2
(T + 5582)^2
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
T 2 T^{2} T 2
T^2
67 67 6 7
T 2 + 4946 T − 35990447 T^{2} + 4946 T - 35990447 T 2 + 4 9 4 6 T − 3 5 9 9 0 4 4 7
T^2 + 4946*T - 35990447
71 71 7 1
T 2 + 2914 T − 67743647 T^{2} + 2914 T - 67743647 T 2 + 2 9 1 4 T − 6 7 7 4 3 6 4 7
T^2 + 2914*T - 67743647
73 73 7 3
T 2 T^{2} T 2
T^2
79 79 7 9
T 2 − 3646 T − 103556927 T^{2} - 3646 T - 103556927 T 2 − 3 6 4 6 T − 1 0 3 5 5 6 9 2 7
T^2 - 3646*T - 103556927
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
T 2 T^{2} T 2
T^2
97 97 9 7
T 2 T^{2} T 2
T^2
show more
show less