Properties

Label 175.5.d.b
Level 175175
Weight 55
Character orbit 175.d
Self dual yes
Analytic conductor 18.09018.090
Analytic rank 00
Dimension 22
CM discriminant -7
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,5,Mod(76,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.76");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 5 5
Character orbit: [χ][\chi] == 175.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 18.089743539718.0897435397
Analytic rank: 00
Dimension: 22
Coefficient field: Q(21)\Q(\sqrt{21})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x5 x^{2} - x - 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+321)\beta = \frac{1}{2}(1 + 3\sqrt{21}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβq2+(β+31)q4+49q7+(16β47)q8+81q9+(16β+95)q1149βq14+(47β+256)q1681βq18+(111β752)q22++(1296β+7695)q99+O(q100) q - \beta q^{2} + (\beta + 31) q^{4} + 49 q^{7} + ( - 16 \beta - 47) q^{8} + 81 q^{9} + (16 \beta + 95) q^{11} - 49 \beta q^{14} + (47 \beta + 256) q^{16} - 81 \beta q^{18} + ( - 111 \beta - 752) q^{22} + \cdots + (1296 \beta + 7695) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2+63q4+98q7110q8+162q9+206q1149q14+559q1681q181615q22+734q23+3087q281234q292961q32+5103q36+1294q37++16686q99+O(q100) 2 q - q^{2} + 63 q^{4} + 98 q^{7} - 110 q^{8} + 162 q^{9} + 206 q^{11} - 49 q^{14} + 559 q^{16} - 81 q^{18} - 1615 q^{22} + 734 q^{23} + 3087 q^{28} - 1234 q^{29} - 2961 q^{32} + 5103 q^{36} + 1294 q^{37}+ \cdots + 16686 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
76.1
2.79129
−1.79129
−7.37386 0 38.3739 0 0 49.0000 −164.982 81.0000 0
76.2 6.37386 0 24.6261 0 0 49.0000 54.9818 81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.5.d.b 2
5.b even 2 1 175.5.d.d yes 2
5.c odd 4 2 175.5.c.b 4
7.b odd 2 1 CM 175.5.d.b 2
35.c odd 2 1 175.5.d.d yes 2
35.f even 4 2 175.5.c.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.5.c.b 4 5.c odd 4 2
175.5.c.b 4 35.f even 4 2
175.5.d.b 2 1.a even 1 1 trivial
175.5.d.b 2 7.b odd 2 1 CM
175.5.d.d yes 2 5.b even 2 1
175.5.d.d yes 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+T247 T_{2}^{2} + T_{2} - 47 acting on S5new(175,[χ])S_{5}^{\mathrm{new}}(175, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T47 T^{2} + T - 47 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T49)2 (T - 49)^{2} Copy content Toggle raw display
1111 T2206T1487 T^{2} - 206T - 1487 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2734T300767 T^{2} - 734T - 300767 Copy content Toggle raw display
2929 T2+1234T599087 T^{2} + 1234 T - 599087 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T21294T3948047 T^{2} - 1294 T - 3948047 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2334T10144847 T^{2} - 334 T - 10144847 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 (T+5582)2 (T + 5582)^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2+4946T35990447 T^{2} + 4946 T - 35990447 Copy content Toggle raw display
7171 T2+2914T67743647 T^{2} + 2914 T - 67743647 Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T23646T103556927 T^{2} - 3646 T - 103556927 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less