Properties

Label 2-1759-1759.1758-c0-0-2
Degree $2$
Conductor $1759$
Sign $1$
Analytic cond. $0.877855$
Root an. cond. $0.936939$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.347·2-s − 0.879·4-s − 1.37·5-s − 0.652·8-s + 9-s − 0.476·10-s + 1.94·11-s − 1.98·13-s + 0.652·16-s − 0.573·17-s + 0.347·18-s + 1.20·20-s + 0.675·22-s + 1.78·23-s + 0.883·25-s − 0.689·26-s + 1.53·31-s + 0.879·32-s − 0.199·34-s − 0.879·36-s + 0.895·40-s + 0.792·41-s + 0.792·43-s − 1.71·44-s − 1.37·45-s + 0.620·46-s + 1.19·47-s + ⋯
L(s)  = 1  + 0.347·2-s − 0.879·4-s − 1.37·5-s − 0.652·8-s + 9-s − 0.476·10-s + 1.94·11-s − 1.98·13-s + 0.652·16-s − 0.573·17-s + 0.347·18-s + 1.20·20-s + 0.675·22-s + 1.78·23-s + 0.883·25-s − 0.689·26-s + 1.53·31-s + 0.879·32-s − 0.199·34-s − 0.879·36-s + 0.895·40-s + 0.792·41-s + 0.792·43-s − 1.71·44-s − 1.37·45-s + 0.620·46-s + 1.19·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1759 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1759 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1759\)
Sign: $1$
Analytic conductor: \(0.877855\)
Root analytic conductor: \(0.936939\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1759} (1758, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1759,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9114260251\)
\(L(\frac12)\) \(\approx\) \(0.9114260251\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad1759 \( 1 - T \)
good2 \( 1 - 0.347T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 + 1.37T + T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 - 1.94T + T^{2} \)
13 \( 1 + 1.98T + T^{2} \)
17 \( 1 + 0.573T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - 1.78T + T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - 1.53T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - 0.792T + T^{2} \)
43 \( 1 - 0.792T + T^{2} \)
47 \( 1 - 1.19T + T^{2} \)
53 \( 1 + 1.67T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 + 0.116T + T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + T + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.295971521982008766814587572220, −8.920778714052252183884633849786, −7.77732328961424631161915605219, −7.17610508630550953224151487549, −6.46792652612837103932398742148, −5.01251784524212718705617177703, −4.35843708139121537068077298441, −4.00838018640125575917342800611, −2.83808812683631469716646747113, −0.968888773396792202436930200982, 0.968888773396792202436930200982, 2.83808812683631469716646747113, 4.00838018640125575917342800611, 4.35843708139121537068077298441, 5.01251784524212718705617177703, 6.46792652612837103932398742148, 7.17610508630550953224151487549, 7.77732328961424631161915605219, 8.920778714052252183884633849786, 9.295971521982008766814587572220

Graph of the $Z$-function along the critical line