Properties

Label 1759.1.b.c.1758.4
Level $1759$
Weight $1$
Character 1759.1758
Self dual yes
Analytic conductor $0.878$
Analytic rank $0$
Dimension $9$
Projective image $D_{27}$
CM discriminant -1759
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1759,1,Mod(1758,1759)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1759, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1759.1758");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1759 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1759.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.877855357221\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\Q(\zeta_{54})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 9x^{7} + 27x^{5} - 30x^{3} + 9x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{27}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{27} - \cdots)\)

Embedding invariants

Embedding label 1758.4
Root \(1.37248\) of defining polynomial
Character \(\chi\) \(=\) 1759.1758

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.347296 q^{2} -0.879385 q^{4} -1.37248 q^{5} -0.652704 q^{8} +1.00000 q^{9} -0.476658 q^{10} +1.94609 q^{11} -1.98648 q^{13} +0.652704 q^{16} -0.573606 q^{17} +0.347296 q^{18} +1.20694 q^{20} +0.675870 q^{22} +1.78727 q^{23} +0.883710 q^{25} -0.689896 q^{26} +1.53209 q^{31} +0.879385 q^{32} -0.199211 q^{34} -0.879385 q^{36} +0.895825 q^{40} +0.792160 q^{41} +0.792160 q^{43} -1.71136 q^{44} -1.37248 q^{45} +0.620711 q^{46} +1.19432 q^{47} +1.00000 q^{49} +0.306909 q^{50} +1.74688 q^{52} -1.67098 q^{53} -2.67098 q^{55} +0.532089 q^{62} -0.347296 q^{64} +2.72641 q^{65} +0.504421 q^{68} -0.116290 q^{71} -0.652704 q^{72} -0.895825 q^{80} +1.00000 q^{81} +0.275114 q^{82} +0.787265 q^{85} +0.275114 q^{86} -1.27022 q^{88} -1.00000 q^{89} -0.476658 q^{90} -1.57169 q^{92} +0.414782 q^{94} +0.347296 q^{98} +1.94609 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{4} - 9 q^{8} + 9 q^{9} + 9 q^{16} + 9 q^{25} - 9 q^{32} + 9 q^{36} + 9 q^{49} - 9 q^{55} - 9 q^{62} - 9 q^{72} + 9 q^{81} - 9 q^{85} - 9 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1759\mathbb{Z}\right)^\times\).

\(n\) \(6\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −0.879385 −0.879385
\(5\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) −0.652704 −0.652704
\(9\) 1.00000 1.00000
\(10\) −0.476658 −0.476658
\(11\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(12\) 0 0
\(13\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.652704 0.652704
\(17\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(18\) 0.347296 0.347296
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 1.20694 1.20694
\(21\) 0 0
\(22\) 0.675870 0.675870
\(23\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(24\) 0 0
\(25\) 0.883710 0.883710
\(26\) −0.689896 −0.689896
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(32\) 0.879385 0.879385
\(33\) 0 0
\(34\) −0.199211 −0.199211
\(35\) 0 0
\(36\) −0.879385 −0.879385
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.895825 0.895825
\(41\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(42\) 0 0
\(43\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(44\) −1.71136 −1.71136
\(45\) −1.37248 −1.37248
\(46\) 0.620711 0.620711
\(47\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(48\) 0 0
\(49\) 1.00000 1.00000
\(50\) 0.306909 0.306909
\(51\) 0 0
\(52\) 1.74688 1.74688
\(53\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(54\) 0 0
\(55\) −2.67098 −2.67098
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0.532089 0.532089
\(63\) 0 0
\(64\) −0.347296 −0.347296
\(65\) 2.72641 2.72641
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0.504421 0.504421
\(69\) 0 0
\(70\) 0 0
\(71\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(72\) −0.652704 −0.652704
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −0.895825 −0.895825
\(81\) 1.00000 1.00000
\(82\) 0.275114 0.275114
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0.787265 0.787265
\(86\) 0.275114 0.275114
\(87\) 0 0
\(88\) −1.27022 −1.27022
\(89\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) −0.476658 −0.476658
\(91\) 0 0
\(92\) −1.57169 −1.57169
\(93\) 0 0
\(94\) 0.414782 0.414782
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.347296 0.347296
\(99\) 1.94609 1.94609
\(100\) −0.777122 −0.777122
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 1.29658 1.29658
\(105\) 0 0
\(106\) −0.580324 −0.580324
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(110\) −0.927620 −0.927620
\(111\) 0 0
\(112\) 0 0
\(113\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(114\) 0 0
\(115\) −2.45299 −2.45299
\(116\) 0 0
\(117\) −1.98648 −1.98648
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.78727 2.78727
\(122\) 0 0
\(123\) 0 0
\(124\) −1.34730 −1.34730
\(125\) 0.159606 0.159606
\(126\) 0 0
\(127\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0.946871 0.946871
\(131\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.374395 0.374395
\(137\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.0403870 −0.0403870
\(143\) −3.86586 −3.86586
\(144\) 0.652704 0.652704
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −0.573606 −0.573606
\(154\) 0 0
\(155\) −2.10277 −2.10277
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.20694 −1.20694
\(161\) 0 0
\(162\) 0.347296 0.347296
\(163\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(164\) −0.696613 −0.696613
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 2.94609 2.94609
\(170\) 0.273414 0.273414
\(171\) 0 0
\(172\) −0.696613 −0.696613
\(173\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.27022 1.27022
\(177\) 0 0
\(178\) −0.347296 −0.347296
\(179\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 1.20694 1.20694
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.16655 −1.16655
\(185\) 0 0
\(186\) 0 0
\(187\) −1.11629 −1.11629
\(188\) −1.05026 −1.05026
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.879385 −0.879385
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0.675870 0.675870
\(199\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(200\) −0.576801 −0.576801
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.08723 −1.08723
\(206\) 0 0
\(207\) 1.78727 1.78727
\(208\) −1.29658 −1.29658
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 1.46943 1.46943
\(213\) 0 0
\(214\) 0 0
\(215\) −1.08723 −1.08723
\(216\) 0 0
\(217\) 0 0
\(218\) 0.414782 0.414782
\(219\) 0 0
\(220\) 2.34882 2.34882
\(221\) 1.13946 1.13946
\(222\) 0 0
\(223\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(224\) 0 0
\(225\) 0.883710 0.883710
\(226\) −0.652704 −0.652704
\(227\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) −0.851915 −0.851915
\(231\) 0 0
\(232\) 0 0
\(233\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(234\) −0.689896 −0.689896
\(235\) −1.63918 −1.63918
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(240\) 0 0
\(241\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(242\) 0.968007 0.968007
\(243\) 0 0
\(244\) 0 0
\(245\) −1.37248 −1.37248
\(246\) 0 0
\(247\) 0 0
\(248\) −1.00000 −1.00000
\(249\) 0 0
\(250\) 0.0554304 0.0554304
\(251\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(252\) 0 0
\(253\) 3.47818 3.47818
\(254\) −0.199211 −0.199211
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2.39756 −2.39756
\(261\) 0 0
\(262\) −0.580324 −0.580324
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 2.29339 2.29339
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(272\) −0.374395 −0.374395
\(273\) 0 0
\(274\) −0.580324 −0.580324
\(275\) 1.71978 1.71978
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 1.53209 1.53209
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0.102263 0.102263
\(285\) 0 0
\(286\) −1.34260 −1.34260
\(287\) 0 0
\(288\) 0.879385 0.879385
\(289\) −0.670976 −0.670976
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −0.652704 −0.652704
\(299\) −3.55036 −3.55036
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −0.199211 −0.199211
\(307\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.730283 −0.730283
\(311\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(312\) 0 0
\(313\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.476658 0.476658
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.879385 −0.879385
\(325\) −1.75547 −1.75547
\(326\) 0.414782 0.414782
\(327\) 0 0
\(328\) −0.517045 −0.517045
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) 1.02317 1.02317
\(339\) 0 0
\(340\) −0.692309 −0.692309
\(341\) 2.98158 2.98158
\(342\) 0 0
\(343\) 0 0
\(344\) −0.517045 −0.517045
\(345\) 0 0
\(346\) 0.675870 0.675870
\(347\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(348\) 0 0
\(349\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.71136 1.71136
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0.159606 0.159606
\(356\) 0.879385 0.879385
\(357\) 0 0
\(358\) −0.347296 −0.347296
\(359\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(360\) 0.895825 0.895825
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 1.16655 1.16655
\(369\) 0.792160 0.792160
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(374\) −0.387683 −0.387683
\(375\) 0 0
\(376\) −0.779535 −0.779535
\(377\) 0 0
\(378\) 0 0
\(379\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.792160 0.792160
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) −1.02519 −1.02519
\(392\) −0.652704 −0.652704
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −1.71136 −1.71136
\(397\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(398\) 0.275114 0.275114
\(399\) 0 0
\(400\) 0.576801 0.576801
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −3.04346 −3.04346
\(404\) 0 0
\(405\) −1.37248 −1.37248
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(410\) −0.377590 −0.377590
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0.620711 0.620711
\(415\) 0 0
\(416\) −1.74688 −1.74688
\(417\) 0 0
\(418\) 0 0
\(419\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(420\) 0 0
\(421\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(422\) 0 0
\(423\) 1.19432 1.19432
\(424\) 1.09065 1.09065
\(425\) −0.506902 −0.506902
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −0.377590 −0.377590
\(431\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(432\) 0 0
\(433\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.05026 −1.05026
\(437\) 0 0
\(438\) 0 0
\(439\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(440\) 1.74336 1.74336
\(441\) 1.00000 1.00000
\(442\) 0.395729 0.395729
\(443\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(444\) 0 0
\(445\) 1.37248 1.37248
\(446\) 0.120615 0.120615
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0.306909 0.306909
\(451\) 1.54161 1.54161
\(452\) 1.65270 1.65270
\(453\) 0 0
\(454\) 0.532089 0.532089
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 2.15712 2.15712
\(461\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.620711 0.620711
\(467\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(468\) 1.74688 1.74688
\(469\) 0 0
\(470\) −0.569281 −0.569281
\(471\) 0 0
\(472\) 0 0
\(473\) 1.54161 1.54161
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.67098 −1.67098
\(478\) −0.199211 −0.199211
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.120615 0.120615
\(483\) 0 0
\(484\) −2.45108 −2.45108
\(485\) 0 0
\(486\) 0 0
\(487\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.476658 −0.476658
\(491\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −2.67098 −2.67098
\(496\) 1.00000 1.00000
\(497\) 0 0
\(498\) 0 0
\(499\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(500\) −0.140355 −0.140355
\(501\) 0 0
\(502\) 0.414782 0.414782
\(503\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.20796 1.20796
\(507\) 0 0
\(508\) 0.504421 0.504421
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.32425 2.32425
\(518\) 0 0
\(519\) 0 0
\(520\) −1.77954 −1.77954
\(521\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 1.46943 1.46943
\(525\) 0 0
\(526\) 0 0
\(527\) −0.878816 −0.878816
\(528\) 0 0
\(529\) 2.19432 2.19432
\(530\) 0.796485 0.796485
\(531\) 0 0
\(532\) 0 0
\(533\) −1.57361 −1.57361
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.94609 1.94609
\(540\) 0 0
\(541\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(542\) −0.689896 −0.689896
\(543\) 0 0
\(544\) −0.504421 −0.504421
\(545\) −1.63918 −1.63918
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 1.46943 1.46943
\(549\) 0 0
\(550\) 0.597273 0.597273
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(558\) 0.532089 0.532089
\(559\) −1.57361 −1.57361
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 2.57942 2.57942
\(566\) 0 0
\(567\) 0 0
\(568\) 0.0759027 0.0759027
\(569\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(570\) 0 0
\(571\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(572\) 3.39958 3.39958
\(573\) 0 0
\(574\) 0 0
\(575\) 1.57942 1.57942
\(576\) −0.347296 −0.347296
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.233027 −0.233027
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.25187 −3.25187
\(584\) 0 0
\(585\) 2.72641 2.72641
\(586\) −0.0403870 −0.0403870
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.65270 1.65270
\(597\) 0 0
\(598\) −1.23303 −1.23303
\(599\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.82547 −3.82547
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.37248 −2.37248
\(612\) 0.504421 0.504421
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0.620711 0.620711
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 1.84914 1.84914
\(621\) 0 0
\(622\) 0.120615 0.120615
\(623\) 0 0
\(624\) 0 0
\(625\) −1.10277 −1.10277
\(626\) −0.652704 −0.652704
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.787265 0.787265
\(636\) 0 0
\(637\) −1.98648 −1.98648
\(638\) 0 0
\(639\) −0.116290 −0.116290
\(640\) 1.37248 1.37248
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(648\) −0.652704 −0.652704
\(649\) 0 0
\(650\) −0.609668 −0.609668
\(651\) 0 0
\(652\) −1.05026 −1.05026
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 2.29339 2.29339
\(656\) 0.517045 0.517045
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) −0.347296 −0.347296
\(675\) 0 0
\(676\) −2.59075 −2.59075
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.513851 −0.513851
\(681\) 0 0
\(682\) 1.03549 1.03549
\(683\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(684\) 0 0
\(685\) 2.29339 2.29339
\(686\) 0 0
\(687\) 0 0
\(688\) 0.517045 0.517045
\(689\) 3.31935 3.31935
\(690\) 0 0
\(691\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(692\) −1.71136 −1.71136
\(693\) 0 0
\(694\) 0.532089 0.532089
\(695\) 0 0
\(696\) 0 0
\(697\) −0.454388 −0.454388
\(698\) −0.347296 −0.347296
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.675870 −0.675870
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0.0554304 0.0554304
\(711\) 0 0
\(712\) 0.652704 0.652704
\(713\) 2.73825 2.73825
\(714\) 0 0
\(715\) 5.30583 5.30583
\(716\) 0.879385 0.879385
\(717\) 0 0
\(718\) −0.476658 −0.476658
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −0.895825 −0.895825
\(721\) 0 0
\(722\) 0.347296 0.347296
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −0.454388 −0.454388
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 1.57169 1.57169
\(737\) 0 0
\(738\) 0.275114 0.275114
\(739\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 2.57942 2.57942
\(746\) 0.120615 0.120615
\(747\) 0 0
\(748\) 0.981649 0.981649
\(749\) 0 0
\(750\) 0 0
\(751\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(752\) 0.779535 0.779535
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0.620711 0.620711
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.787265 0.787265
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(774\) 0.275114 0.275114
\(775\) 1.35392 1.35392
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −0.226310 −0.226310
\(782\) −0.356044 −0.356044
\(783\) 0 0
\(784\) 0.652704 0.652704
\(785\) 0 0
\(786\) 0 0
\(787\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −1.27022 −1.27022
\(793\) 0 0
\(794\) 0.414782 0.414782
\(795\) 0 0
\(796\) −0.696613 −0.696613
\(797\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(798\) 0 0
\(799\) −0.685068 −0.685068
\(800\) 0.777122 0.777122
\(801\) −1.00000 −1.00000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −1.05698 −1.05698
\(807\) 0 0
\(808\) 0 0
\(809\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(810\) −0.476658 −0.476658
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.63918 −1.63918
\(816\) 0 0
\(817\) 0 0
\(818\) −0.580324 −0.580324
\(819\) 0 0
\(820\) 0.956090 0.956090
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) −1.57169 −1.57169
\(829\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.689896 0.689896
\(833\) −0.573606 −0.573606
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0.620711 0.620711
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) −0.199211 −0.199211
\(843\) 0 0
\(844\) 0 0
\(845\) −4.04346 −4.04346
\(846\) 0.414782 0.414782
\(847\) 0 0
\(848\) −1.09065 −1.09065
\(849\) 0 0
\(850\) −0.176045 −0.176045
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0.956090 0.956090
\(861\) 0 0
\(862\) −0.689896 −0.689896
\(863\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(864\) 0 0
\(865\) −2.67098 −2.67098
\(866\) 0.532089 0.532089
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.779535 −0.779535
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) −0.0403870 −0.0403870
\(879\) 0 0
\(880\) −1.74336 −1.74336
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0.347296 0.347296
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −1.00202 −1.00202
\(885\) 0 0
\(886\) −0.652704 −0.652704
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.476658 0.476658
\(891\) 1.94609 1.94609
\(892\) −0.305407 −0.305407
\(893\) 0 0
\(894\) 0 0
\(895\) 1.37248 1.37248
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.777122 −0.777122
\(901\) 0.958482 0.958482
\(902\) 0.535397 0.535397
\(903\) 0 0
\(904\) 1.22668 1.22668
\(905\) 0 0
\(906\) 0 0
\(907\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(908\) −1.34730 −1.34730
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 1.60108 1.60108
\(921\) 0 0
\(922\) −0.0403870 −0.0403870
\(923\) 0.231007 0.231007
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.57169 −1.57169
\(933\) 0 0
\(934\) −0.476658 −0.476658
\(935\) 1.53209 1.53209
\(936\) 1.29658 1.29658
\(937\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.44147 1.44147
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 1.41580 1.41580
\(944\) 0 0
\(945\) 0 0
\(946\) 0.535397 0.535397
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) −0.580324 −0.580324
\(955\) 0 0
\(956\) 0.504421 0.504421
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.34730 1.34730
\(962\) 0 0
\(963\) 0 0
\(964\) −0.305407 −0.305407
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −1.81926 −1.81926
\(969\) 0 0
\(970\) 0 0
\(971\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.476658 −0.476658
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) −1.94609 −1.94609
\(980\) 1.20694 1.20694
\(981\) 1.19432 1.19432
\(982\) −0.689896 −0.689896
\(983\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.41580 1.41580
\(990\) −0.927620 −0.927620
\(991\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(992\) 1.34730 1.34730
\(993\) 0 0
\(994\) 0 0
\(995\) −1.08723 −1.08723
\(996\) 0 0
\(997\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(998\) −0.199211 −0.199211
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1759.1.b.c.1758.4 9
1759.1758 odd 2 CM 1759.1.b.c.1758.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1759.1.b.c.1758.4 9 1.1 even 1 trivial
1759.1.b.c.1758.4 9 1759.1758 odd 2 CM