Properties

Label 1759.1.b.c.1758.4
Level 17591759
Weight 11
Character 1759.1758
Self dual yes
Analytic conductor 0.8780.878
Analytic rank 00
Dimension 99
Projective image D27D_{27}
CM discriminant -1759
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1759,1,Mod(1758,1759)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1759, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1759.1758");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1759 1759
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1759.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.8778553572210.877855357221
Analytic rank: 00
Dimension: 99
Coefficient field: Q(ζ54)+\Q(\zeta_{54})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x99x7+27x530x3+9x1 x^{9} - 9x^{7} + 27x^{5} - 30x^{3} + 9x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D27D_{27}
Projective field: Galois closure of Q[x]/(x27)\mathbb{Q}[x]/(x^{27} - \cdots)

Embedding invariants

Embedding label 1758.4
Root 1.372481.37248 of defining polynomial
Character χ\chi == 1759.1758

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.347296q20.879385q41.37248q50.652704q8+1.00000q90.476658q10+1.94609q111.98648q13+0.652704q160.573606q17+0.347296q18+1.20694q20+0.675870q22+1.78727q23+0.883710q250.689896q26+1.53209q31+0.879385q320.199211q340.879385q36+0.895825q40+0.792160q41+0.792160q431.71136q441.37248q45+0.620711q46+1.19432q47+1.00000q49+0.306909q50+1.74688q521.67098q532.67098q55+0.532089q620.347296q64+2.72641q65+0.504421q680.116290q710.652704q720.895825q80+1.00000q81+0.275114q82+0.787265q85+0.275114q861.27022q881.00000q890.476658q901.57169q92+0.414782q94+0.347296q98+1.94609q99+O(q100)q+0.347296 q^{2} -0.879385 q^{4} -1.37248 q^{5} -0.652704 q^{8} +1.00000 q^{9} -0.476658 q^{10} +1.94609 q^{11} -1.98648 q^{13} +0.652704 q^{16} -0.573606 q^{17} +0.347296 q^{18} +1.20694 q^{20} +0.675870 q^{22} +1.78727 q^{23} +0.883710 q^{25} -0.689896 q^{26} +1.53209 q^{31} +0.879385 q^{32} -0.199211 q^{34} -0.879385 q^{36} +0.895825 q^{40} +0.792160 q^{41} +0.792160 q^{43} -1.71136 q^{44} -1.37248 q^{45} +0.620711 q^{46} +1.19432 q^{47} +1.00000 q^{49} +0.306909 q^{50} +1.74688 q^{52} -1.67098 q^{53} -2.67098 q^{55} +0.532089 q^{62} -0.347296 q^{64} +2.72641 q^{65} +0.504421 q^{68} -0.116290 q^{71} -0.652704 q^{72} -0.895825 q^{80} +1.00000 q^{81} +0.275114 q^{82} +0.787265 q^{85} +0.275114 q^{86} -1.27022 q^{88} -1.00000 q^{89} -0.476658 q^{90} -1.57169 q^{92} +0.414782 q^{94} +0.347296 q^{98} +1.94609 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q+9q49q8+9q9+9q16+9q259q32+9q36+9q499q559q629q72+9q819q859q89+O(q100) 9 q + 9 q^{4} - 9 q^{8} + 9 q^{9} + 9 q^{16} + 9 q^{25} - 9 q^{32} + 9 q^{36} + 9 q^{49} - 9 q^{55} - 9 q^{62} - 9 q^{72} + 9 q^{81} - 9 q^{85} - 9 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1759Z)×\left(\mathbb{Z}/1759\mathbb{Z}\right)^\times.

nn 66
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 −0.879385 −0.879385
55 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 −0.652704 −0.652704
99 1.00000 1.00000
1010 −0.476658 −0.476658
1111 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
1212 0 0
1313 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
1414 0 0
1515 0 0
1616 0.652704 0.652704
1717 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
1818 0.347296 0.347296
1919 0 0 1.00000 00
−1.00000 π\pi
2020 1.20694 1.20694
2121 0 0
2222 0.675870 0.675870
2323 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
2424 0 0
2525 0.883710 0.883710
2626 −0.689896 −0.689896
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
3232 0.879385 0.879385
3333 0 0
3434 −0.199211 −0.199211
3535 0 0
3636 −0.879385 −0.879385
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0.895825 0.895825
4141 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
4242 0 0
4343 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
4444 −1.71136 −1.71136
4545 −1.37248 −1.37248
4646 0.620711 0.620711
4747 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
4848 0 0
4949 1.00000 1.00000
5050 0.306909 0.306909
5151 0 0
5252 1.74688 1.74688
5353 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
5454 0 0
5555 −2.67098 −2.67098
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0.532089 0.532089
6363 0 0
6464 −0.347296 −0.347296
6565 2.72641 2.72641
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0.504421 0.504421
6969 0 0
7070 0 0
7171 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
7272 −0.652704 −0.652704
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 −0.895825 −0.895825
8181 1.00000 1.00000
8282 0.275114 0.275114
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0.787265 0.787265
8686 0.275114 0.275114
8787 0 0
8888 −1.27022 −1.27022
8989 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 −0.476658 −0.476658
9191 0 0
9292 −1.57169 −1.57169
9393 0 0
9494 0.414782 0.414782
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0.347296 0.347296
9999 1.94609 1.94609
100100 −0.777122 −0.777122
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 1.29658 1.29658
105105 0 0
106106 −0.580324 −0.580324
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
110110 −0.927620 −0.927620
111111 0 0
112112 0 0
113113 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
114114 0 0
115115 −2.45299 −2.45299
116116 0 0
117117 −1.98648 −1.98648
118118 0 0
119119 0 0
120120 0 0
121121 2.78727 2.78727
122122 0 0
123123 0 0
124124 −1.34730 −1.34730
125125 0.159606 0.159606
126126 0 0
127127 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
128128 −1.00000 −1.00000
129129 0 0
130130 0.946871 0.946871
131131 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.374395 0.374395
137137 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 −0.0403870 −0.0403870
143143 −3.86586 −3.86586
144144 0.652704 0.652704
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 −0.573606 −0.573606
154154 0 0
155155 −2.10277 −2.10277
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 −1.20694 −1.20694
161161 0 0
162162 0.347296 0.347296
163163 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
164164 −0.696613 −0.696613
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 2.94609 2.94609
170170 0.273414 0.273414
171171 0 0
172172 −0.696613 −0.696613
173173 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
174174 0 0
175175 0 0
176176 1.27022 1.27022
177177 0 0
178178 −0.347296 −0.347296
179179 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 1.20694 1.20694
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 −1.16655 −1.16655
185185 0 0
186186 0 0
187187 −1.11629 −1.11629
188188 −1.05026 −1.05026
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 −0.879385 −0.879385
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0.675870 0.675870
199199 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
200200 −0.576801 −0.576801
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −1.08723 −1.08723
206206 0 0
207207 1.78727 1.78727
208208 −1.29658 −1.29658
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 1.46943 1.46943
213213 0 0
214214 0 0
215215 −1.08723 −1.08723
216216 0 0
217217 0 0
218218 0.414782 0.414782
219219 0 0
220220 2.34882 2.34882
221221 1.13946 1.13946
222222 0 0
223223 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
224224 0 0
225225 0.883710 0.883710
226226 −0.652704 −0.652704
227227 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 −0.851915 −0.851915
231231 0 0
232232 0 0
233233 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
234234 −0.689896 −0.689896
235235 −1.63918 −1.63918
236236 0 0
237237 0 0
238238 0 0
239239 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
240240 0 0
241241 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
242242 0.968007 0.968007
243243 0 0
244244 0 0
245245 −1.37248 −1.37248
246246 0 0
247247 0 0
248248 −1.00000 −1.00000
249249 0 0
250250 0.0554304 0.0554304
251251 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
252252 0 0
253253 3.47818 3.47818
254254 −0.199211 −0.199211
255255 0 0
256256 0 0
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 −2.39756 −2.39756
261261 0 0
262262 −0.580324 −0.580324
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 2.29339 2.29339
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
272272 −0.374395 −0.374395
273273 0 0
274274 −0.580324 −0.580324
275275 1.71978 1.71978
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 1.53209 1.53209
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0.102263 0.102263
285285 0 0
286286 −1.34260 −1.34260
287287 0 0
288288 0.879385 0.879385
289289 −0.670976 −0.670976
290290 0 0
291291 0 0
292292 0 0
293293 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 −0.652704 −0.652704
299299 −3.55036 −3.55036
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 −0.199211 −0.199211
307307 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
308308 0 0
309309 0 0
310310 −0.730283 −0.730283
311311 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
312312 0 0
313313 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 0.476658 0.476658
321321 0 0
322322 0 0
323323 0 0
324324 −0.879385 −0.879385
325325 −1.75547 −1.75547
326326 0.414782 0.414782
327327 0 0
328328 −0.517045 −0.517045
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
338338 1.02317 1.02317
339339 0 0
340340 −0.692309 −0.692309
341341 2.98158 2.98158
342342 0 0
343343 0 0
344344 −0.517045 −0.517045
345345 0 0
346346 0.675870 0.675870
347347 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
348348 0 0
349349 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 1.71136 1.71136
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0.159606 0.159606
356356 0.879385 0.879385
357357 0 0
358358 −0.347296 −0.347296
359359 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
360360 0.895825 0.895825
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 1.16655 1.16655
369369 0.792160 0.792160
370370 0 0
371371 0 0
372372 0 0
373373 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
374374 −0.387683 −0.387683
375375 0 0
376376 −0.779535 −0.779535
377377 0 0
378378 0 0
379379 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 0.792160 0.792160
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 −1.02519 −1.02519
392392 −0.652704 −0.652704
393393 0 0
394394 0 0
395395 0 0
396396 −1.71136 −1.71136
397397 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
398398 0.275114 0.275114
399399 0 0
400400 0.576801 0.576801
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 −3.04346 −3.04346
404404 0 0
405405 −1.37248 −1.37248
406406 0 0
407407 0 0
408408 0 0
409409 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
410410 −0.377590 −0.377590
411411 0 0
412412 0 0
413413 0 0
414414 0.620711 0.620711
415415 0 0
416416 −1.74688 −1.74688
417417 0 0
418418 0 0
419419 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
420420 0 0
421421 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
422422 0 0
423423 1.19432 1.19432
424424 1.09065 1.09065
425425 −0.506902 −0.506902
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 −0.377590 −0.377590
431431 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
432432 0 0
433433 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
434434 0 0
435435 0 0
436436 −1.05026 −1.05026
437437 0 0
438438 0 0
439439 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
440440 1.74336 1.74336
441441 1.00000 1.00000
442442 0.395729 0.395729
443443 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
444444 0 0
445445 1.37248 1.37248
446446 0.120615 0.120615
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0.306909 0.306909
451451 1.54161 1.54161
452452 1.65270 1.65270
453453 0 0
454454 0.532089 0.532089
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 2.15712 2.15712
461461 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0.620711 0.620711
467467 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
468468 1.74688 1.74688
469469 0 0
470470 −0.569281 −0.569281
471471 0 0
472472 0 0
473473 1.54161 1.54161
474474 0 0
475475 0 0
476476 0 0
477477 −1.67098 −1.67098
478478 −0.199211 −0.199211
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0.120615 0.120615
483483 0 0
484484 −2.45108 −2.45108
485485 0 0
486486 0 0
487487 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
488488 0 0
489489 0 0
490490 −0.476658 −0.476658
491491 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
492492 0 0
493493 0 0
494494 0 0
495495 −2.67098 −2.67098
496496 1.00000 1.00000
497497 0 0
498498 0 0
499499 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
500500 −0.140355 −0.140355
501501 0 0
502502 0.414782 0.414782
503503 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
504504 0 0
505505 0 0
506506 1.20796 1.20796
507507 0 0
508508 0.504421 0.504421
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 1.00000 1.00000
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 2.32425 2.32425
518518 0 0
519519 0 0
520520 −1.77954 −1.77954
521521 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 1.46943 1.46943
525525 0 0
526526 0 0
527527 −0.878816 −0.878816
528528 0 0
529529 2.19432 2.19432
530530 0.796485 0.796485
531531 0 0
532532 0 0
533533 −1.57361 −1.57361
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 1.94609 1.94609
540540 0 0
541541 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
542542 −0.689896 −0.689896
543543 0 0
544544 −0.504421 −0.504421
545545 −1.63918 −1.63918
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 1.46943 1.46943
549549 0 0
550550 0.597273 0.597273
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
558558 0.532089 0.532089
559559 −1.57361 −1.57361
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 2.57942 2.57942
566566 0 0
567567 0 0
568568 0.0759027 0.0759027
569569 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
570570 0 0
571571 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
572572 3.39958 3.39958
573573 0 0
574574 0 0
575575 1.57942 1.57942
576576 −0.347296 −0.347296
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −0.233027 −0.233027
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 −3.25187 −3.25187
584584 0 0
585585 2.72641 2.72641
586586 −0.0403870 −0.0403870
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 1.65270 1.65270
597597 0 0
598598 −1.23303 −1.23303
599599 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 −3.82547 −3.82547
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 −2.37248 −2.37248
612612 0.504421 0.504421
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0.620711 0.620711
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 1.84914 1.84914
621621 0 0
622622 0.120615 0.120615
623623 0 0
624624 0 0
625625 −1.10277 −1.10277
626626 −0.652704 −0.652704
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
632632 0 0
633633 0 0
634634 0 0
635635 0.787265 0.787265
636636 0 0
637637 −1.98648 −1.98648
638638 0 0
639639 −0.116290 −0.116290
640640 1.37248 1.37248
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
648648 −0.652704 −0.652704
649649 0 0
650650 −0.609668 −0.609668
651651 0 0
652652 −1.05026 −1.05026
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 2.29339 2.29339
656656 0.517045 0.517045
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 −0.347296 −0.347296
675675 0 0
676676 −2.59075 −2.59075
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 −0.513851 −0.513851
681681 0 0
682682 1.03549 1.03549
683683 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
684684 0 0
685685 2.29339 2.29339
686686 0 0
687687 0 0
688688 0.517045 0.517045
689689 3.31935 3.31935
690690 0 0
691691 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
692692 −1.71136 −1.71136
693693 0 0
694694 0.532089 0.532089
695695 0 0
696696 0 0
697697 −0.454388 −0.454388
698698 −0.347296 −0.347296
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 −0.675870 −0.675870
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0.0554304 0.0554304
711711 0 0
712712 0.652704 0.652704
713713 2.73825 2.73825
714714 0 0
715715 5.30583 5.30583
716716 0.879385 0.879385
717717 0 0
718718 −0.476658 −0.476658
719719 0 0 1.00000 00
−1.00000 π\pi
720720 −0.895825 −0.895825
721721 0 0
722722 0.347296 0.347296
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 −0.454388 −0.454388
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 1.57169 1.57169
737737 0 0
738738 0.275114 0.275114
739739 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 2.57942 2.57942
746746 0.120615 0.120615
747747 0 0
748748 0.981649 0.981649
749749 0 0
750750 0 0
751751 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
752752 0.779535 0.779535
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0.620711 0.620711
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0.787265 0.787265
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
774774 0.275114 0.275114
775775 1.35392 1.35392
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 −0.226310 −0.226310
782782 −0.356044 −0.356044
783783 0 0
784784 0.652704 0.652704
785785 0 0
786786 0 0
787787 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 −1.27022 −1.27022
793793 0 0
794794 0.414782 0.414782
795795 0 0
796796 −0.696613 −0.696613
797797 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
798798 0 0
799799 −0.685068 −0.685068
800800 0.777122 0.777122
801801 −1.00000 −1.00000
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 −1.05698 −1.05698
807807 0 0
808808 0 0
809809 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
810810 −0.476658 −0.476658
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 −1.63918 −1.63918
816816 0 0
817817 0 0
818818 −0.580324 −0.580324
819819 0 0
820820 0.956090 0.956090
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 −1.57169 −1.57169
829829 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
830830 0 0
831831 0 0
832832 0.689896 0.689896
833833 −0.573606 −0.573606
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0.620711 0.620711
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 −0.199211 −0.199211
843843 0 0
844844 0 0
845845 −4.04346 −4.04346
846846 0.414782 0.414782
847847 0 0
848848 −1.09065 −1.09065
849849 0 0
850850 −0.176045 −0.176045
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0.956090 0.956090
861861 0 0
862862 −0.689896 −0.689896
863863 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
864864 0 0
865865 −2.67098 −2.67098
866866 0.532089 0.532089
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −0.779535 −0.779535
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 −0.0403870 −0.0403870
879879 0 0
880880 −1.74336 −1.74336
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0.347296 0.347296
883883 0 0 1.00000 00
−1.00000 π\pi
884884 −1.00202 −1.00202
885885 0 0
886886 −0.652704 −0.652704
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0.476658 0.476658
891891 1.94609 1.94609
892892 −0.305407 −0.305407
893893 0 0
894894 0 0
895895 1.37248 1.37248
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 −0.777122 −0.777122
901901 0.958482 0.958482
902902 0.535397 0.535397
903903 0 0
904904 1.22668 1.22668
905905 0 0
906906 0 0
907907 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
908908 −1.34730 −1.34730
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 1.60108 1.60108
921921 0 0
922922 −0.0403870 −0.0403870
923923 0.231007 0.231007
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
930930 0 0
931931 0 0
932932 −1.57169 −1.57169
933933 0 0
934934 −0.476658 −0.476658
935935 1.53209 1.53209
936936 1.29658 1.29658
937937 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
938938 0 0
939939 0 0
940940 1.44147 1.44147
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 1.41580 1.41580
944944 0 0
945945 0 0
946946 0.535397 0.535397
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 −0.580324 −0.580324
955955 0 0
956956 0.504421 0.504421
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.34730 1.34730
962962 0 0
963963 0 0
964964 −0.305407 −0.305407
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 −1.81926 −1.81926
969969 0 0
970970 0 0
971971 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
972972 0 0
973973 0 0
974974 −0.476658 −0.476658
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 −1.94609 −1.94609
980980 1.20694 1.20694
981981 1.19432 1.19432
982982 −0.689896 −0.689896
983983 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 1.41580 1.41580
990990 −0.927620 −0.927620
991991 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
992992 1.34730 1.34730
993993 0 0
994994 0 0
995995 −1.08723 −1.08723
996996 0 0
997997 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
998998 −0.199211 −0.199211
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1759.1.b.c.1758.4 9
1759.1758 odd 2 CM 1759.1.b.c.1758.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1759.1.b.c.1758.4 9 1.1 even 1 trivial
1759.1.b.c.1758.4 9 1759.1758 odd 2 CM