L(s) = 1 | + (0.632 + 1.94i)3-s + (0.132 + 0.0962i)5-s + (−1.08 + 3.32i)7-s + (−0.962 + 0.699i)9-s + (0.605 − 3.26i)11-s + (−2.17 + 1.58i)13-s + (−0.103 + 0.318i)15-s + (6.12 + 4.45i)17-s + (−1.42 − 4.39i)19-s − 7.16·21-s + 0.706·23-s + (−1.53 − 4.72i)25-s + (2.99 + 2.17i)27-s + (−0.317 + 0.978i)29-s + (4.36 − 3.17i)31-s + ⋯ |
L(s) = 1 | + (0.365 + 1.12i)3-s + (0.0592 + 0.0430i)5-s + (−0.408 + 1.25i)7-s + (−0.320 + 0.233i)9-s + (0.182 − 0.983i)11-s + (−0.604 + 0.439i)13-s + (−0.0267 + 0.0823i)15-s + (1.48 + 1.08i)17-s + (−0.327 − 1.00i)19-s − 1.56·21-s + 0.147·23-s + (−0.307 − 0.945i)25-s + (0.577 + 0.419i)27-s + (−0.0590 + 0.181i)29-s + (0.784 − 0.570i)31-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)(0.205−0.978i)Λ(2−s)
Λ(s)=(=(176s/2ΓC(s+1/2)L(s)(0.205−0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
176
= 24⋅11
|
Sign: |
0.205−0.978i
|
Analytic conductor: |
1.40536 |
Root analytic conductor: |
1.18548 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ176(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 176, ( :1/2), 0.205−0.978i)
|
Particular Values
L(1) |
≈ |
0.978595+0.794186i |
L(21) |
≈ |
0.978595+0.794186i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−0.605+3.26i)T |
good | 3 | 1+(−0.632−1.94i)T+(−2.42+1.76i)T2 |
| 5 | 1+(−0.132−0.0962i)T+(1.54+4.75i)T2 |
| 7 | 1+(1.08−3.32i)T+(−5.66−4.11i)T2 |
| 13 | 1+(2.17−1.58i)T+(4.01−12.3i)T2 |
| 17 | 1+(−6.12−4.45i)T+(5.25+16.1i)T2 |
| 19 | 1+(1.42+4.39i)T+(−15.3+11.1i)T2 |
| 23 | 1−0.706T+23T2 |
| 29 | 1+(0.317−0.978i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−4.36+3.17i)T+(9.57−29.4i)T2 |
| 37 | 1+(−3.58+11.0i)T+(−29.9−21.7i)T2 |
| 41 | 1+(0.0867+0.267i)T+(−33.1+24.0i)T2 |
| 43 | 1+4.31T+43T2 |
| 47 | 1+(1.80+5.54i)T+(−38.0+27.6i)T2 |
| 53 | 1+(7.98−5.80i)T+(16.3−50.4i)T2 |
| 59 | 1+(−0.954+2.93i)T+(−47.7−34.6i)T2 |
| 61 | 1+(5.60+4.07i)T+(18.8+58.0i)T2 |
| 67 | 1+1.91T+67T2 |
| 71 | 1+(−9.84−7.15i)T+(21.9+67.5i)T2 |
| 73 | 1+(3.51−10.8i)T+(−59.0−42.9i)T2 |
| 79 | 1+(1.39−1.01i)T+(24.4−75.1i)T2 |
| 83 | 1+(−3.81−2.76i)T+(25.6+78.9i)T2 |
| 89 | 1−6.31T+89T2 |
| 97 | 1+(5.66−4.11i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.78910917917367609455976449908, −11.93783356083992030203952430430, −10.78545077875222608301362614272, −9.755851615318848197798348598797, −9.079029026967876296918724657305, −8.152225243586906976660095379235, −6.37491048399335312868704848626, −5.33896613363675125677552180647, −3.93642021275947198122313611779, −2.71849584237390381850445638510,
1.35581194759338434609970806089, 3.16636848561437883201834090916, 4.80020257559731952294416070601, 6.49830332980487890222439246367, 7.44702989004712179308848779685, 7.903697349301780603942310972774, 9.703539046774580095873210925889, 10.24371291211192062639792896442, 11.85734630982709314041070103355, 12.58892775332025253809914477572