L(s) = 1 | + (0.632 + 1.94i)3-s + (0.132 + 0.0962i)5-s + (−1.08 + 3.32i)7-s + (−0.962 + 0.699i)9-s + (0.605 − 3.26i)11-s + (−2.17 + 1.58i)13-s + (−0.103 + 0.318i)15-s + (6.12 + 4.45i)17-s + (−1.42 − 4.39i)19-s − 7.16·21-s + 0.706·23-s + (−1.53 − 4.72i)25-s + (2.99 + 2.17i)27-s + (−0.317 + 0.978i)29-s + (4.36 − 3.17i)31-s + ⋯ |
L(s) = 1 | + (0.365 + 1.12i)3-s + (0.0592 + 0.0430i)5-s + (−0.408 + 1.25i)7-s + (−0.320 + 0.233i)9-s + (0.182 − 0.983i)11-s + (−0.604 + 0.439i)13-s + (−0.0267 + 0.0823i)15-s + (1.48 + 1.08i)17-s + (−0.327 − 1.00i)19-s − 1.56·21-s + 0.147·23-s + (−0.307 − 0.945i)25-s + (0.577 + 0.419i)27-s + (−0.0590 + 0.181i)29-s + (0.784 − 0.570i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.205 - 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.205 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.978595 + 0.794186i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.978595 + 0.794186i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-0.605 + 3.26i)T \) |
good | 3 | \( 1 + (-0.632 - 1.94i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-0.132 - 0.0962i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (1.08 - 3.32i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (2.17 - 1.58i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-6.12 - 4.45i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.42 + 4.39i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 0.706T + 23T^{2} \) |
| 29 | \( 1 + (0.317 - 0.978i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-4.36 + 3.17i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.58 + 11.0i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.0867 + 0.267i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 4.31T + 43T^{2} \) |
| 47 | \( 1 + (1.80 + 5.54i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (7.98 - 5.80i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.954 + 2.93i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (5.60 + 4.07i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 1.91T + 67T^{2} \) |
| 71 | \( 1 + (-9.84 - 7.15i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (3.51 - 10.8i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (1.39 - 1.01i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-3.81 - 2.76i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 6.31T + 89T^{2} \) |
| 97 | \( 1 + (5.66 - 4.11i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.78910917917367609455976449908, −11.93783356083992030203952430430, −10.78545077875222608301362614272, −9.755851615318848197798348598797, −9.079029026967876296918724657305, −8.152225243586906976660095379235, −6.37491048399335312868704848626, −5.33896613363675125677552180647, −3.93642021275947198122313611779, −2.71849584237390381850445638510,
1.35581194759338434609970806089, 3.16636848561437883201834090916, 4.80020257559731952294416070601, 6.49830332980487890222439246367, 7.44702989004712179308848779685, 7.903697349301780603942310972774, 9.703539046774580095873210925889, 10.24371291211192062639792896442, 11.85734630982709314041070103355, 12.58892775332025253809914477572