Properties

Label 176.2.m.d.113.2
Level $176$
Weight $2$
Character 176.113
Analytic conductor $1.405$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(49,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 113.2
Root \(-0.390899 - 1.20306i\) of defining polynomial
Character \(\chi\) \(=\) 176.113
Dual form 176.2.m.d.81.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.632489 + 1.94660i) q^{3} +(0.132489 + 0.0962586i) q^{5} +(-1.08188 + 3.32969i) q^{7} +(-0.962157 + 0.699048i) q^{9} +(0.605270 - 3.26093i) q^{11} +(-2.17926 + 1.58333i) q^{13} +(-0.103579 + 0.318785i) q^{15} +(6.12970 + 4.45349i) q^{17} +(-1.42705 - 4.39201i) q^{19} -7.16586 q^{21} +0.706114 q^{23} +(-1.53680 - 4.72978i) q^{25} +(2.99831 + 2.17840i) q^{27} +(-0.317950 + 0.978551i) q^{29} +(4.36856 - 3.17394i) q^{31} +(6.73055 - 0.884280i) q^{33} +(-0.463848 + 0.337006i) q^{35} +(3.58293 - 11.0271i) q^{37} +(-4.46047 - 3.24072i) q^{39} +(-0.0867577 - 0.267013i) q^{41} -4.31175 q^{43} -0.194764 q^{45} +(-1.80113 - 5.54330i) q^{47} +(-4.25326 - 3.09017i) q^{49} +(-4.79220 + 14.7489i) q^{51} +(-7.98659 + 5.80260i) q^{53} +(0.394084 - 0.373773i) q^{55} +(7.64689 - 5.55579i) q^{57} +(0.954915 - 2.93893i) q^{59} +(-5.60801 - 4.07446i) q^{61} +(-1.28667 - 3.95998i) q^{63} -0.441137 q^{65} -1.91665 q^{67} +(0.446609 + 1.37452i) q^{69} +(9.84407 + 7.15214i) q^{71} +(-3.51550 + 10.8196i) q^{73} +(8.23497 - 5.98306i) q^{75} +(10.2031 + 5.54330i) q^{77} +(-1.39747 + 1.01532i) q^{79} +(-3.44661 + 10.6076i) q^{81} +(3.81006 + 2.76817i) q^{83} +(0.383429 + 1.18007i) q^{85} -2.10595 q^{87} +6.31175 q^{89} +(-2.91429 - 8.96925i) q^{91} +(8.94146 + 6.49635i) q^{93} +(0.233701 - 0.719257i) q^{95} +(-5.66755 + 4.11771i) q^{97} +(1.69718 + 3.56064i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{3} - 3 q^{5} - 7 q^{7} - 13 q^{9} - 7 q^{11} + 7 q^{13} + 13 q^{15} + q^{17} + 2 q^{19} - 2 q^{21} + 4 q^{23} - 33 q^{25} + 22 q^{27} + 17 q^{29} + 13 q^{31} + 16 q^{33} - 11 q^{35} + q^{37}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.632489 + 1.94660i 0.365167 + 1.12387i 0.949876 + 0.312626i \(0.101209\pi\)
−0.584709 + 0.811243i \(0.698791\pi\)
\(4\) 0 0
\(5\) 0.132489 + 0.0962586i 0.0592507 + 0.0430481i 0.617016 0.786950i \(-0.288341\pi\)
−0.557766 + 0.829998i \(0.688341\pi\)
\(6\) 0 0
\(7\) −1.08188 + 3.32969i −0.408913 + 1.25851i 0.508670 + 0.860962i \(0.330137\pi\)
−0.917583 + 0.397544i \(0.869863\pi\)
\(8\) 0 0
\(9\) −0.962157 + 0.699048i −0.320719 + 0.233016i
\(10\) 0 0
\(11\) 0.605270 3.26093i 0.182496 0.983207i
\(12\) 0 0
\(13\) −2.17926 + 1.58333i −0.604419 + 0.439136i −0.847445 0.530884i \(-0.821860\pi\)
0.243025 + 0.970020i \(0.421860\pi\)
\(14\) 0 0
\(15\) −0.103579 + 0.318785i −0.0267441 + 0.0823098i
\(16\) 0 0
\(17\) 6.12970 + 4.45349i 1.48667 + 1.08013i 0.975330 + 0.220753i \(0.0708513\pi\)
0.511342 + 0.859378i \(0.329149\pi\)
\(18\) 0 0
\(19\) −1.42705 4.39201i −0.327388 1.00760i −0.970351 0.241699i \(-0.922295\pi\)
0.642963 0.765897i \(-0.277705\pi\)
\(20\) 0 0
\(21\) −7.16586 −1.56372
\(22\) 0 0
\(23\) 0.706114 0.147235 0.0736174 0.997287i \(-0.476546\pi\)
0.0736174 + 0.997287i \(0.476546\pi\)
\(24\) 0 0
\(25\) −1.53680 4.72978i −0.307359 0.945955i
\(26\) 0 0
\(27\) 2.99831 + 2.17840i 0.577025 + 0.419233i
\(28\) 0 0
\(29\) −0.317950 + 0.978551i −0.0590419 + 0.181712i −0.976228 0.216748i \(-0.930455\pi\)
0.917186 + 0.398460i \(0.130455\pi\)
\(30\) 0 0
\(31\) 4.36856 3.17394i 0.784616 0.570057i −0.121745 0.992561i \(-0.538849\pi\)
0.906361 + 0.422505i \(0.138849\pi\)
\(32\) 0 0
\(33\) 6.73055 0.884280i 1.17164 0.153933i
\(34\) 0 0
\(35\) −0.463848 + 0.337006i −0.0784047 + 0.0569643i
\(36\) 0 0
\(37\) 3.58293 11.0271i 0.589030 1.81285i 0.00658248 0.999978i \(-0.497905\pi\)
0.582447 0.812869i \(-0.302095\pi\)
\(38\) 0 0
\(39\) −4.46047 3.24072i −0.714246 0.518930i
\(40\) 0 0
\(41\) −0.0867577 0.267013i −0.0135493 0.0417004i 0.944053 0.329793i \(-0.106979\pi\)
−0.957603 + 0.288093i \(0.906979\pi\)
\(42\) 0 0
\(43\) −4.31175 −0.657536 −0.328768 0.944411i \(-0.606633\pi\)
−0.328768 + 0.944411i \(0.606633\pi\)
\(44\) 0 0
\(45\) −0.194764 −0.0290337
\(46\) 0 0
\(47\) −1.80113 5.54330i −0.262722 0.808574i −0.992210 0.124580i \(-0.960242\pi\)
0.729488 0.683994i \(-0.239758\pi\)
\(48\) 0 0
\(49\) −4.25326 3.09017i −0.607608 0.441453i
\(50\) 0 0
\(51\) −4.79220 + 14.7489i −0.671042 + 2.06525i
\(52\) 0 0
\(53\) −7.98659 + 5.80260i −1.09704 + 0.797048i −0.980575 0.196146i \(-0.937157\pi\)
−0.116468 + 0.993194i \(0.537157\pi\)
\(54\) 0 0
\(55\) 0.394084 0.373773i 0.0531382 0.0503996i
\(56\) 0 0
\(57\) 7.64689 5.55579i 1.01286 0.735883i
\(58\) 0 0
\(59\) 0.954915 2.93893i 0.124319 0.382616i −0.869457 0.494008i \(-0.835531\pi\)
0.993776 + 0.111393i \(0.0355312\pi\)
\(60\) 0 0
\(61\) −5.60801 4.07446i −0.718032 0.521681i 0.167723 0.985834i \(-0.446359\pi\)
−0.885755 + 0.464154i \(0.846359\pi\)
\(62\) 0 0
\(63\) −1.28667 3.95998i −0.162106 0.498910i
\(64\) 0 0
\(65\) −0.441137 −0.0547163
\(66\) 0 0
\(67\) −1.91665 −0.234157 −0.117078 0.993123i \(-0.537353\pi\)
−0.117078 + 0.993123i \(0.537353\pi\)
\(68\) 0 0
\(69\) 0.446609 + 1.37452i 0.0537654 + 0.165473i
\(70\) 0 0
\(71\) 9.84407 + 7.15214i 1.16828 + 0.848803i 0.990802 0.135323i \(-0.0432071\pi\)
0.177475 + 0.984125i \(0.443207\pi\)
\(72\) 0 0
\(73\) −3.51550 + 10.8196i −0.411458 + 1.26634i 0.503923 + 0.863749i \(0.331890\pi\)
−0.915381 + 0.402589i \(0.868110\pi\)
\(74\) 0 0
\(75\) 8.23497 5.98306i 0.950893 0.690864i
\(76\) 0 0
\(77\) 10.2031 + 5.54330i 1.16275 + 0.631718i
\(78\) 0 0
\(79\) −1.39747 + 1.01532i −0.157227 + 0.114232i −0.663617 0.748072i \(-0.730980\pi\)
0.506390 + 0.862305i \(0.330980\pi\)
\(80\) 0 0
\(81\) −3.44661 + 10.6076i −0.382957 + 1.17862i
\(82\) 0 0
\(83\) 3.81006 + 2.76817i 0.418209 + 0.303846i 0.776917 0.629603i \(-0.216783\pi\)
−0.358708 + 0.933450i \(0.616783\pi\)
\(84\) 0 0
\(85\) 0.383429 + 1.18007i 0.0415887 + 0.127997i
\(86\) 0 0
\(87\) −2.10595 −0.225781
\(88\) 0 0
\(89\) 6.31175 0.669044 0.334522 0.942388i \(-0.391425\pi\)
0.334522 + 0.942388i \(0.391425\pi\)
\(90\) 0 0
\(91\) −2.91429 8.96925i −0.305500 0.940233i
\(92\) 0 0
\(93\) 8.94146 + 6.49635i 0.927186 + 0.673640i
\(94\) 0 0
\(95\) 0.233701 0.719257i 0.0239772 0.0737942i
\(96\) 0 0
\(97\) −5.66755 + 4.11771i −0.575452 + 0.418090i −0.837082 0.547078i \(-0.815740\pi\)
0.261630 + 0.965168i \(0.415740\pi\)
\(98\) 0 0
\(99\) 1.69718 + 3.56064i 0.170573 + 0.357858i
\(100\) 0 0
\(101\) −3.25495 + 2.36486i −0.323880 + 0.235312i −0.737829 0.674988i \(-0.764149\pi\)
0.413950 + 0.910300i \(0.364149\pi\)
\(102\) 0 0
\(103\) −4.65523 + 14.3273i −0.458694 + 1.41171i 0.408050 + 0.912960i \(0.366209\pi\)
−0.866744 + 0.498754i \(0.833791\pi\)
\(104\) 0 0
\(105\) −0.949394 0.689775i −0.0926514 0.0673151i
\(106\) 0 0
\(107\) 0.160353 + 0.493515i 0.0155019 + 0.0477099i 0.958508 0.285065i \(-0.0920151\pi\)
−0.943006 + 0.332775i \(0.892015\pi\)
\(108\) 0 0
\(109\) −0.285032 −0.0273011 −0.0136506 0.999907i \(-0.504345\pi\)
−0.0136506 + 0.999907i \(0.504345\pi\)
\(110\) 0 0
\(111\) 23.7315 2.25250
\(112\) 0 0
\(113\) −3.57504 11.0028i −0.336311 1.03506i −0.966072 0.258271i \(-0.916847\pi\)
0.629761 0.776789i \(-0.283153\pi\)
\(114\) 0 0
\(115\) 0.0935520 + 0.0679695i 0.00872377 + 0.00633819i
\(116\) 0 0
\(117\) 0.989973 3.04682i 0.0915230 0.281679i
\(118\) 0 0
\(119\) −21.4604 + 15.5919i −1.96727 + 1.42930i
\(120\) 0 0
\(121\) −10.2673 3.94749i −0.933390 0.358862i
\(122\) 0 0
\(123\) 0.464894 0.337765i 0.0419180 0.0304552i
\(124\) 0 0
\(125\) 0.504704 1.55332i 0.0451421 0.138933i
\(126\) 0 0
\(127\) −13.8495 10.0623i −1.22895 0.892883i −0.232138 0.972683i \(-0.574572\pi\)
−0.996811 + 0.0797996i \(0.974572\pi\)
\(128\) 0 0
\(129\) −2.72713 8.39326i −0.240111 0.738985i
\(130\) 0 0
\(131\) −5.02344 −0.438900 −0.219450 0.975624i \(-0.570426\pi\)
−0.219450 + 0.975624i \(0.570426\pi\)
\(132\) 0 0
\(133\) 16.1679 1.40194
\(134\) 0 0
\(135\) 0.187552 + 0.577226i 0.0161419 + 0.0496797i
\(136\) 0 0
\(137\) −2.43148 1.76657i −0.207735 0.150928i 0.479053 0.877786i \(-0.340980\pi\)
−0.686788 + 0.726857i \(0.740980\pi\)
\(138\) 0 0
\(139\) 1.65652 5.09825i 0.140504 0.432428i −0.855901 0.517140i \(-0.826997\pi\)
0.996406 + 0.0847114i \(0.0269968\pi\)
\(140\) 0 0
\(141\) 9.65140 7.01215i 0.812795 0.590530i
\(142\) 0 0
\(143\) 3.84407 + 8.06477i 0.321458 + 0.674410i
\(144\) 0 0
\(145\) −0.136319 + 0.0990413i −0.0113207 + 0.00822493i
\(146\) 0 0
\(147\) 3.32519 10.2339i 0.274257 0.844077i
\(148\) 0 0
\(149\) −4.70922 3.42145i −0.385794 0.280296i 0.377936 0.925832i \(-0.376634\pi\)
−0.763730 + 0.645536i \(0.776634\pi\)
\(150\) 0 0
\(151\) −1.12657 3.46722i −0.0916788 0.282158i 0.894695 0.446677i \(-0.147393\pi\)
−0.986374 + 0.164519i \(0.947393\pi\)
\(152\) 0 0
\(153\) −9.01094 −0.728492
\(154\) 0 0
\(155\) 0.884303 0.0710289
\(156\) 0 0
\(157\) 0.0448569 + 0.138055i 0.00357997 + 0.0110180i 0.952831 0.303503i \(-0.0981562\pi\)
−0.949251 + 0.314521i \(0.898156\pi\)
\(158\) 0 0
\(159\) −16.3468 11.8766i −1.29638 0.941877i
\(160\) 0 0
\(161\) −0.763932 + 2.35114i −0.0602063 + 0.185296i
\(162\) 0 0
\(163\) −11.6809 + 8.48668i −0.914919 + 0.664728i −0.942254 0.334899i \(-0.891298\pi\)
0.0273349 + 0.999626i \(0.491298\pi\)
\(164\) 0 0
\(165\) 0.976840 + 0.530716i 0.0760469 + 0.0413162i
\(166\) 0 0
\(167\) 14.1091 10.2508i 1.09179 0.793233i 0.112090 0.993698i \(-0.464245\pi\)
0.979701 + 0.200465i \(0.0642454\pi\)
\(168\) 0 0
\(169\) −1.77496 + 5.46275i −0.136535 + 0.420212i
\(170\) 0 0
\(171\) 4.44328 + 3.22823i 0.339786 + 0.246869i
\(172\) 0 0
\(173\) −5.63736 17.3500i −0.428601 1.31910i −0.899504 0.436913i \(-0.856072\pi\)
0.470903 0.882185i \(-0.343928\pi\)
\(174\) 0 0
\(175\) 17.4113 1.31617
\(176\) 0 0
\(177\) 6.32489 0.475408
\(178\) 0 0
\(179\) 2.82688 + 8.70025i 0.211291 + 0.650288i 0.999396 + 0.0347466i \(0.0110624\pi\)
−0.788105 + 0.615541i \(0.788938\pi\)
\(180\) 0 0
\(181\) 13.4621 + 9.78079i 1.00063 + 0.727001i 0.962223 0.272261i \(-0.0877716\pi\)
0.0384073 + 0.999262i \(0.487772\pi\)
\(182\) 0 0
\(183\) 4.38433 13.4936i 0.324099 0.997475i
\(184\) 0 0
\(185\) 1.53615 1.11608i 0.112940 0.0820558i
\(186\) 0 0
\(187\) 18.2326 17.2930i 1.33330 1.26459i
\(188\) 0 0
\(189\) −10.4972 + 7.62667i −0.763560 + 0.554759i
\(190\) 0 0
\(191\) 2.37239 7.30146i 0.171660 0.528315i −0.827805 0.561015i \(-0.810411\pi\)
0.999465 + 0.0327007i \(0.0104108\pi\)
\(192\) 0 0
\(193\) −15.9130 11.5615i −1.14544 0.832213i −0.157574 0.987507i \(-0.550367\pi\)
−0.987868 + 0.155294i \(0.950367\pi\)
\(194\) 0 0
\(195\) −0.279014 0.858716i −0.0199806 0.0614940i
\(196\) 0 0
\(197\) 22.7460 1.62059 0.810294 0.586024i \(-0.199308\pi\)
0.810294 + 0.586024i \(0.199308\pi\)
\(198\) 0 0
\(199\) −6.85748 −0.486114 −0.243057 0.970012i \(-0.578150\pi\)
−0.243057 + 0.970012i \(0.578150\pi\)
\(200\) 0 0
\(201\) −1.21226 3.73096i −0.0855064 0.263162i
\(202\) 0 0
\(203\) −2.91429 2.11735i −0.204543 0.148609i
\(204\) 0 0
\(205\) 0.0142079 0.0437273i 0.000992320 0.00305405i
\(206\) 0 0
\(207\) −0.679393 + 0.493608i −0.0472210 + 0.0343081i
\(208\) 0 0
\(209\) −15.1858 + 1.99516i −1.05042 + 0.138008i
\(210\) 0 0
\(211\) −9.30563 + 6.76094i −0.640626 + 0.465442i −0.860065 0.510184i \(-0.829577\pi\)
0.219439 + 0.975626i \(0.429577\pi\)
\(212\) 0 0
\(213\) −7.69609 + 23.6861i −0.527327 + 1.62295i
\(214\) 0 0
\(215\) −0.571258 0.415043i −0.0389595 0.0283057i
\(216\) 0 0
\(217\) 5.84198 + 17.9798i 0.396580 + 1.22055i
\(218\) 0 0
\(219\) −23.2849 −1.57345
\(220\) 0 0
\(221\) −20.4096 −1.37290
\(222\) 0 0
\(223\) −5.02745 15.4729i −0.336663 1.03614i −0.965897 0.258926i \(-0.916632\pi\)
0.629235 0.777215i \(-0.283368\pi\)
\(224\) 0 0
\(225\) 4.78498 + 3.47649i 0.318999 + 0.231766i
\(226\) 0 0
\(227\) −1.91835 + 5.90406i −0.127325 + 0.391866i −0.994318 0.106455i \(-0.966050\pi\)
0.866992 + 0.498321i \(0.166050\pi\)
\(228\) 0 0
\(229\) 16.6982 12.1319i 1.10345 0.801701i 0.121827 0.992551i \(-0.461125\pi\)
0.981619 + 0.190850i \(0.0611246\pi\)
\(230\) 0 0
\(231\) −4.33728 + 23.3673i −0.285372 + 1.53746i
\(232\) 0 0
\(233\) 8.31111 6.03837i 0.544479 0.395587i −0.281267 0.959630i \(-0.590755\pi\)
0.825746 + 0.564043i \(0.190755\pi\)
\(234\) 0 0
\(235\) 0.294962 0.907799i 0.0192412 0.0592182i
\(236\) 0 0
\(237\) −2.86030 2.07813i −0.185796 0.134989i
\(238\) 0 0
\(239\) 6.19330 + 19.0610i 0.400611 + 1.23295i 0.924505 + 0.381171i \(0.124479\pi\)
−0.523893 + 0.851784i \(0.675521\pi\)
\(240\) 0 0
\(241\) −6.87625 −0.442938 −0.221469 0.975167i \(-0.571085\pi\)
−0.221469 + 0.975167i \(0.571085\pi\)
\(242\) 0 0
\(243\) −11.7103 −0.751216
\(244\) 0 0
\(245\) −0.266052 0.818825i −0.0169975 0.0523128i
\(246\) 0 0
\(247\) 10.0639 + 7.31186i 0.640352 + 0.465243i
\(248\) 0 0
\(249\) −2.97870 + 9.16750i −0.188768 + 0.580967i
\(250\) 0 0
\(251\) 4.20817 3.05742i 0.265618 0.192982i −0.447002 0.894533i \(-0.647508\pi\)
0.712620 + 0.701550i \(0.247508\pi\)
\(252\) 0 0
\(253\) 0.427390 2.30259i 0.0268698 0.144762i
\(254\) 0 0
\(255\) −2.05462 + 1.49277i −0.128665 + 0.0934806i
\(256\) 0 0
\(257\) 5.74683 17.6869i 0.358478 1.10328i −0.595488 0.803364i \(-0.703041\pi\)
0.953965 0.299916i \(-0.0969588\pi\)
\(258\) 0 0
\(259\) 32.8406 + 23.8601i 2.04062 + 1.48259i
\(260\) 0 0
\(261\) −0.378136 1.16378i −0.0234060 0.0720363i
\(262\) 0 0
\(263\) −1.27857 −0.0788397 −0.0394199 0.999223i \(-0.512551\pi\)
−0.0394199 + 0.999223i \(0.512551\pi\)
\(264\) 0 0
\(265\) −1.61668 −0.0993120
\(266\) 0 0
\(267\) 3.99211 + 12.2865i 0.244313 + 0.751919i
\(268\) 0 0
\(269\) −2.17926 1.58333i −0.132872 0.0965372i 0.519364 0.854553i \(-0.326169\pi\)
−0.652236 + 0.758016i \(0.726169\pi\)
\(270\) 0 0
\(271\) 3.20991 9.87910i 0.194988 0.600112i −0.804988 0.593291i \(-0.797829\pi\)
0.999977 0.00682189i \(-0.00217149\pi\)
\(272\) 0 0
\(273\) 15.6163 11.3459i 0.945141 0.686685i
\(274\) 0 0
\(275\) −16.3536 + 2.14859i −0.986161 + 0.129565i
\(276\) 0 0
\(277\) 5.91429 4.29698i 0.355355 0.258181i −0.395757 0.918355i \(-0.629518\pi\)
0.751112 + 0.660175i \(0.229518\pi\)
\(278\) 0 0
\(279\) −1.98450 + 6.10766i −0.118809 + 0.365656i
\(280\) 0 0
\(281\) 13.5472 + 9.84260i 0.808157 + 0.587160i 0.913296 0.407297i \(-0.133529\pi\)
−0.105139 + 0.994458i \(0.533529\pi\)
\(282\) 0 0
\(283\) 6.32816 + 19.4761i 0.376170 + 1.15773i 0.942686 + 0.333681i \(0.108291\pi\)
−0.566516 + 0.824051i \(0.691709\pi\)
\(284\) 0 0
\(285\) 1.54792 0.0916908
\(286\) 0 0
\(287\) 0.982932 0.0580206
\(288\) 0 0
\(289\) 12.4864 + 38.4292i 0.734494 + 2.26054i
\(290\) 0 0
\(291\) −11.6002 8.42804i −0.680016 0.494060i
\(292\) 0 0
\(293\) −5.76665 + 17.7479i −0.336891 + 1.03684i 0.628892 + 0.777493i \(0.283509\pi\)
−0.965783 + 0.259352i \(0.916491\pi\)
\(294\) 0 0
\(295\) 0.409412 0.297455i 0.0238369 0.0173185i
\(296\) 0 0
\(297\) 8.91839 8.45875i 0.517497 0.490826i
\(298\) 0 0
\(299\) −1.53881 + 1.11801i −0.0889916 + 0.0646562i
\(300\) 0 0
\(301\) 4.66481 14.3568i 0.268875 0.827513i
\(302\) 0 0
\(303\) −6.66215 4.84034i −0.382731 0.278070i
\(304\) 0 0
\(305\) −0.350795 1.07964i −0.0200865 0.0618199i
\(306\) 0 0
\(307\) 16.2802 0.929160 0.464580 0.885531i \(-0.346205\pi\)
0.464580 + 0.885531i \(0.346205\pi\)
\(308\) 0 0
\(309\) −30.8339 −1.75408
\(310\) 0 0
\(311\) −3.22987 9.94052i −0.183149 0.563675i 0.816762 0.576974i \(-0.195767\pi\)
−0.999912 + 0.0132990i \(0.995767\pi\)
\(312\) 0 0
\(313\) −6.81457 4.95107i −0.385182 0.279851i 0.378296 0.925685i \(-0.376510\pi\)
−0.763478 + 0.645833i \(0.776510\pi\)
\(314\) 0 0
\(315\) 0.210712 0.648505i 0.0118723 0.0365391i
\(316\) 0 0
\(317\) −17.3685 + 12.6189i −0.975510 + 0.708749i −0.956701 0.291074i \(-0.905988\pi\)
−0.0188092 + 0.999823i \(0.505988\pi\)
\(318\) 0 0
\(319\) 2.99854 + 1.62910i 0.167886 + 0.0912121i
\(320\) 0 0
\(321\) −0.859254 + 0.624285i −0.0479589 + 0.0348442i
\(322\) 0 0
\(323\) 10.8124 33.2771i 0.601617 1.85159i
\(324\) 0 0
\(325\) 10.8379 + 7.87418i 0.601177 + 0.436781i
\(326\) 0 0
\(327\) −0.180279 0.554843i −0.00996948 0.0306829i
\(328\) 0 0
\(329\) 20.4061 1.12502
\(330\) 0 0
\(331\) −21.5452 −1.18423 −0.592117 0.805852i \(-0.701708\pi\)
−0.592117 + 0.805852i \(0.701708\pi\)
\(332\) 0 0
\(333\) 4.26115 + 13.1145i 0.233509 + 0.718668i
\(334\) 0 0
\(335\) −0.253935 0.184494i −0.0138739 0.0100800i
\(336\) 0 0
\(337\) 3.46278 10.6574i 0.188630 0.580543i −0.811362 0.584544i \(-0.801273\pi\)
0.999992 + 0.00400074i \(0.00127348\pi\)
\(338\) 0 0
\(339\) 19.1570 13.9183i 1.04046 0.755940i
\(340\) 0 0
\(341\) −7.70584 16.1666i −0.417294 0.875473i
\(342\) 0 0
\(343\) −4.93598 + 3.58620i −0.266518 + 0.193637i
\(344\) 0 0
\(345\) −0.0731388 + 0.225098i −0.00393766 + 0.0121189i
\(346\) 0 0
\(347\) 10.1421 + 7.36867i 0.544456 + 0.395571i 0.825737 0.564055i \(-0.190759\pi\)
−0.281281 + 0.959625i \(0.590759\pi\)
\(348\) 0 0
\(349\) 4.96963 + 15.2949i 0.266018 + 0.818719i 0.991457 + 0.130433i \(0.0416368\pi\)
−0.725439 + 0.688286i \(0.758363\pi\)
\(350\) 0 0
\(351\) −9.98323 −0.532865
\(352\) 0 0
\(353\) −16.9450 −0.901892 −0.450946 0.892551i \(-0.648913\pi\)
−0.450946 + 0.892551i \(0.648913\pi\)
\(354\) 0 0
\(355\) 0.615773 + 1.89515i 0.0326818 + 0.100584i
\(356\) 0 0
\(357\) −43.9246 31.9131i −2.32473 1.68902i
\(358\) 0 0
\(359\) 7.62469 23.4664i 0.402416 1.23851i −0.520618 0.853789i \(-0.674299\pi\)
0.923034 0.384718i \(-0.125701\pi\)
\(360\) 0 0
\(361\) −1.88197 + 1.36733i −0.0990508 + 0.0719646i
\(362\) 0 0
\(363\) 1.19023 22.4831i 0.0624708 1.18005i
\(364\) 0 0
\(365\) −1.50724 + 1.09508i −0.0788927 + 0.0573189i
\(366\) 0 0
\(367\) −9.56377 + 29.4343i −0.499225 + 1.53646i 0.311043 + 0.950396i \(0.399322\pi\)
−0.810268 + 0.586060i \(0.800678\pi\)
\(368\) 0 0
\(369\) 0.270129 + 0.196260i 0.0140624 + 0.0102169i
\(370\) 0 0
\(371\) −10.6803 32.8706i −0.554494 1.70656i
\(372\) 0 0
\(373\) −16.6908 −0.864217 −0.432108 0.901822i \(-0.642230\pi\)
−0.432108 + 0.901822i \(0.642230\pi\)
\(374\) 0 0
\(375\) 3.34291 0.172627
\(376\) 0 0
\(377\) −0.856469 2.63594i −0.0441104 0.135758i
\(378\) 0 0
\(379\) −13.4370 9.76252i −0.690210 0.501467i 0.186519 0.982451i \(-0.440279\pi\)
−0.876729 + 0.480985i \(0.840279\pi\)
\(380\) 0 0
\(381\) 10.8276 33.3238i 0.554713 1.70723i
\(382\) 0 0
\(383\) 2.20817 1.60433i 0.112832 0.0819775i −0.529938 0.848036i \(-0.677785\pi\)
0.642771 + 0.766059i \(0.277785\pi\)
\(384\) 0 0
\(385\) 0.818197 + 1.71656i 0.0416992 + 0.0874838i
\(386\) 0 0
\(387\) 4.14859 3.01412i 0.210884 0.153217i
\(388\) 0 0
\(389\) −4.71908 + 14.5238i −0.239267 + 0.736387i 0.757260 + 0.653113i \(0.226538\pi\)
−0.996527 + 0.0832735i \(0.973462\pi\)
\(390\) 0 0
\(391\) 4.32827 + 3.14467i 0.218890 + 0.159033i
\(392\) 0 0
\(393\) −3.17727 9.77862i −0.160272 0.493266i
\(394\) 0 0
\(395\) −0.282881 −0.0142333
\(396\) 0 0
\(397\) 21.4810 1.07810 0.539050 0.842274i \(-0.318783\pi\)
0.539050 + 0.842274i \(0.318783\pi\)
\(398\) 0 0
\(399\) 10.2260 + 31.4725i 0.511942 + 1.57560i
\(400\) 0 0
\(401\) 28.9448 + 21.0296i 1.44544 + 1.05017i 0.986871 + 0.161509i \(0.0516360\pi\)
0.458564 + 0.888661i \(0.348364\pi\)
\(402\) 0 0
\(403\) −4.49485 + 13.8337i −0.223904 + 0.689107i
\(404\) 0 0
\(405\) −1.47771 + 1.07362i −0.0734278 + 0.0533484i
\(406\) 0 0
\(407\) −33.7900 18.3581i −1.67491 0.909975i
\(408\) 0 0
\(409\) −8.54327 + 6.20705i −0.422437 + 0.306919i −0.778618 0.627499i \(-0.784079\pi\)
0.356180 + 0.934417i \(0.384079\pi\)
\(410\) 0 0
\(411\) 1.90093 5.85045i 0.0937658 0.288581i
\(412\) 0 0
\(413\) 8.75261 + 6.35915i 0.430688 + 0.312913i
\(414\) 0 0
\(415\) 0.238329 + 0.733502i 0.0116991 + 0.0360062i
\(416\) 0 0
\(417\) 10.9720 0.537301
\(418\) 0 0
\(419\) −29.9952 −1.46536 −0.732680 0.680573i \(-0.761731\pi\)
−0.732680 + 0.680573i \(0.761731\pi\)
\(420\) 0 0
\(421\) −6.55267 20.1670i −0.319357 0.982881i −0.973924 0.226876i \(-0.927149\pi\)
0.654566 0.756005i \(-0.272851\pi\)
\(422\) 0 0
\(423\) 5.60801 + 4.07446i 0.272671 + 0.198107i
\(424\) 0 0
\(425\) 11.6439 35.8362i 0.564812 1.73831i
\(426\) 0 0
\(427\) 19.6339 14.2649i 0.950150 0.690325i
\(428\) 0 0
\(429\) −13.2675 + 12.5837i −0.640563 + 0.607549i
\(430\) 0 0
\(431\) −10.8875 + 7.91021i −0.524431 + 0.381021i −0.818270 0.574833i \(-0.805067\pi\)
0.293840 + 0.955855i \(0.405067\pi\)
\(432\) 0 0
\(433\) 9.24458 28.4519i 0.444266 1.36731i −0.439020 0.898477i \(-0.644674\pi\)
0.883286 0.468834i \(-0.155326\pi\)
\(434\) 0 0
\(435\) −0.279014 0.202715i −0.0133777 0.00971946i
\(436\) 0 0
\(437\) −1.00766 3.10126i −0.0482029 0.148353i
\(438\) 0 0
\(439\) 33.1644 1.58285 0.791425 0.611266i \(-0.209339\pi\)
0.791425 + 0.611266i \(0.209339\pi\)
\(440\) 0 0
\(441\) 6.25248 0.297737
\(442\) 0 0
\(443\) 8.59675 + 26.4581i 0.408444 + 1.25706i 0.917985 + 0.396615i \(0.129815\pi\)
−0.509541 + 0.860447i \(0.670185\pi\)
\(444\) 0 0
\(445\) 0.836235 + 0.607560i 0.0396413 + 0.0288011i
\(446\) 0 0
\(447\) 3.68166 11.3310i 0.174137 0.535937i
\(448\) 0 0
\(449\) 5.90249 4.28841i 0.278556 0.202383i −0.439731 0.898129i \(-0.644926\pi\)
0.718287 + 0.695747i \(0.244926\pi\)
\(450\) 0 0
\(451\) −0.923221 + 0.121296i −0.0434728 + 0.00571159i
\(452\) 0 0
\(453\) 6.03675 4.38595i 0.283631 0.206070i
\(454\) 0 0
\(455\) 0.477258 1.46885i 0.0223742 0.0688607i
\(456\) 0 0
\(457\) 13.0495 + 9.48103i 0.610430 + 0.443504i 0.849566 0.527483i \(-0.176864\pi\)
−0.239135 + 0.970986i \(0.576864\pi\)
\(458\) 0 0
\(459\) 8.67727 + 26.7059i 0.405020 + 1.24652i
\(460\) 0 0
\(461\) −14.4253 −0.671851 −0.335926 0.941888i \(-0.609049\pi\)
−0.335926 + 0.941888i \(0.609049\pi\)
\(462\) 0 0
\(463\) 19.7906 0.919748 0.459874 0.887984i \(-0.347895\pi\)
0.459874 + 0.887984i \(0.347895\pi\)
\(464\) 0 0
\(465\) 0.559312 + 1.72138i 0.0259374 + 0.0798273i
\(466\) 0 0
\(467\) 30.5957 + 22.2291i 1.41580 + 1.02864i 0.992447 + 0.122673i \(0.0391465\pi\)
0.423352 + 0.905965i \(0.360853\pi\)
\(468\) 0 0
\(469\) 2.07359 6.38187i 0.0957497 0.294687i
\(470\) 0 0
\(471\) −0.240367 + 0.174637i −0.0110755 + 0.00804685i
\(472\) 0 0
\(473\) −2.60978 + 14.0603i −0.119998 + 0.646494i
\(474\) 0 0
\(475\) −18.5801 + 13.4993i −0.852515 + 0.619389i
\(476\) 0 0
\(477\) 3.62806 11.1660i 0.166118 0.511257i
\(478\) 0 0
\(479\) −31.0120 22.5316i −1.41698 1.02949i −0.992262 0.124165i \(-0.960375\pi\)
−0.424714 0.905328i \(-0.639625\pi\)
\(480\) 0 0
\(481\) 9.65140 + 29.7040i 0.440066 + 1.35438i
\(482\) 0 0
\(483\) −5.05991 −0.230234
\(484\) 0 0
\(485\) −1.14725 −0.0520940
\(486\) 0 0
\(487\) 3.54083 + 10.8975i 0.160450 + 0.493815i 0.998672 0.0515142i \(-0.0164048\pi\)
−0.838222 + 0.545329i \(0.816405\pi\)
\(488\) 0 0
\(489\) −23.9082 17.3703i −1.08117 0.785513i
\(490\) 0 0
\(491\) −7.56701 + 23.2889i −0.341494 + 1.05101i 0.621939 + 0.783065i \(0.286345\pi\)
−0.963434 + 0.267946i \(0.913655\pi\)
\(492\) 0 0
\(493\) −6.30691 + 4.58224i −0.284049 + 0.206374i
\(494\) 0 0
\(495\) −0.117885 + 0.635112i −0.00529854 + 0.0285462i
\(496\) 0 0
\(497\) −34.4645 + 25.0400i −1.54595 + 1.12320i
\(498\) 0 0
\(499\) −4.69978 + 14.4644i −0.210391 + 0.647516i 0.789058 + 0.614319i \(0.210569\pi\)
−0.999449 + 0.0331977i \(0.989431\pi\)
\(500\) 0 0
\(501\) 28.8781 + 20.9811i 1.29018 + 0.937368i
\(502\) 0 0
\(503\) −8.23196 25.3354i −0.367045 1.12965i −0.948691 0.316206i \(-0.897591\pi\)
0.581646 0.813442i \(-0.302409\pi\)
\(504\) 0 0
\(505\) −0.658882 −0.0293198
\(506\) 0 0
\(507\) −11.7564 −0.522121
\(508\) 0 0
\(509\) 4.72544 + 14.5434i 0.209452 + 0.644626i 0.999501 + 0.0315827i \(0.0100548\pi\)
−0.790050 + 0.613043i \(0.789945\pi\)
\(510\) 0 0
\(511\) −32.2226 23.4111i −1.42544 1.03564i
\(512\) 0 0
\(513\) 5.28881 16.2773i 0.233507 0.718660i
\(514\) 0 0
\(515\) −1.99589 + 1.45010i −0.0879496 + 0.0638991i
\(516\) 0 0
\(517\) −19.1665 + 2.51815i −0.842941 + 0.110748i
\(518\) 0 0
\(519\) 30.2080 21.9474i 1.32598 0.963383i
\(520\) 0 0
\(521\) −10.7044 + 32.9446i −0.468967 + 1.44333i 0.384958 + 0.922934i \(0.374216\pi\)
−0.853925 + 0.520397i \(0.825784\pi\)
\(522\) 0 0
\(523\) −13.5192 9.82230i −0.591155 0.429499i 0.251574 0.967838i \(-0.419052\pi\)
−0.842728 + 0.538339i \(0.819052\pi\)
\(524\) 0 0
\(525\) 11.0125 + 33.8929i 0.480624 + 1.47921i
\(526\) 0 0
\(527\) 40.9131 1.78220
\(528\) 0 0
\(529\) −22.5014 −0.978322
\(530\) 0 0
\(531\) 1.13567 + 3.49524i 0.0492840 + 0.151681i
\(532\) 0 0
\(533\) 0.611837 + 0.444525i 0.0265016 + 0.0192545i
\(534\) 0 0
\(535\) −0.0262601 + 0.0808204i −0.00113532 + 0.00349417i
\(536\) 0 0
\(537\) −15.1479 + 11.0056i −0.653682 + 0.474928i
\(538\) 0 0
\(539\) −12.6512 + 11.9992i −0.544926 + 0.516841i
\(540\) 0 0
\(541\) 10.4552 7.59614i 0.449504 0.326583i −0.339896 0.940463i \(-0.610392\pi\)
0.789400 + 0.613880i \(0.210392\pi\)
\(542\) 0 0
\(543\) −10.5247 + 32.3916i −0.451656 + 1.39006i
\(544\) 0 0
\(545\) −0.0377635 0.0274368i −0.00161761 0.00117526i
\(546\) 0 0
\(547\) −1.61370 4.96645i −0.0689968 0.212350i 0.910613 0.413260i \(-0.135610\pi\)
−0.979610 + 0.200910i \(0.935610\pi\)
\(548\) 0 0
\(549\) 8.24403 0.351846
\(550\) 0 0
\(551\) 4.75154 0.202422
\(552\) 0 0
\(553\) −1.86880 5.75159i −0.0794696 0.244582i
\(554\) 0 0
\(555\) 3.14416 + 2.28436i 0.133462 + 0.0969659i
\(556\) 0 0
\(557\) −3.64711 + 11.2247i −0.154533 + 0.475604i −0.998113 0.0613991i \(-0.980444\pi\)
0.843580 + 0.537003i \(0.180444\pi\)
\(558\) 0 0
\(559\) 9.39645 6.82692i 0.397428 0.288748i
\(560\) 0 0
\(561\) 45.1944 + 24.5541i 1.90811 + 1.03667i
\(562\) 0 0
\(563\) 29.8190 21.6648i 1.25672 0.913061i 0.258128 0.966111i \(-0.416894\pi\)
0.998592 + 0.0530501i \(0.0168943\pi\)
\(564\) 0 0
\(565\) 0.585466 1.80188i 0.0246307 0.0758056i
\(566\) 0 0
\(567\) −31.5911 22.9523i −1.32670 0.963906i
\(568\) 0 0
\(569\) −8.33266 25.6453i −0.349323 1.07511i −0.959228 0.282632i \(-0.908792\pi\)
0.609905 0.792475i \(-0.291208\pi\)
\(570\) 0 0
\(571\) 14.3565 0.600801 0.300400 0.953813i \(-0.402880\pi\)
0.300400 + 0.953813i \(0.402880\pi\)
\(572\) 0 0
\(573\) 15.7135 0.656442
\(574\) 0 0
\(575\) −1.08515 3.33976i −0.0452540 0.139278i
\(576\) 0 0
\(577\) −8.57084 6.22708i −0.356809 0.259237i 0.394911 0.918719i \(-0.370775\pi\)
−0.751720 + 0.659483i \(0.770775\pi\)
\(578\) 0 0
\(579\) 12.4408 38.2887i 0.517020 1.59123i
\(580\) 0 0
\(581\) −13.3392 + 9.69150i −0.553403 + 0.402071i
\(582\) 0 0
\(583\) 14.0878 + 29.5558i 0.583457 + 1.22408i
\(584\) 0 0
\(585\) 0.424443 0.308376i 0.0175486 0.0127498i
\(586\) 0 0
\(587\) −6.17859 + 19.0157i −0.255018 + 0.784864i 0.738809 + 0.673915i \(0.235389\pi\)
−0.993826 + 0.110948i \(0.964611\pi\)
\(588\) 0 0
\(589\) −20.1741 14.6574i −0.831261 0.603947i
\(590\) 0 0
\(591\) 14.3866 + 44.2774i 0.591786 + 1.82133i
\(592\) 0 0
\(593\) 12.8414 0.527334 0.263667 0.964614i \(-0.415068\pi\)
0.263667 + 0.964614i \(0.415068\pi\)
\(594\) 0 0
\(595\) −4.34410 −0.178091
\(596\) 0 0
\(597\) −4.33728 13.3488i −0.177513 0.546329i
\(598\) 0 0
\(599\) 14.8097 + 10.7599i 0.605108 + 0.439636i 0.847688 0.530495i \(-0.177994\pi\)
−0.242581 + 0.970131i \(0.577994\pi\)
\(600\) 0 0
\(601\) 4.98290 15.3358i 0.203257 0.625560i −0.796524 0.604607i \(-0.793330\pi\)
0.999780 0.0209527i \(-0.00666995\pi\)
\(602\) 0 0
\(603\) 1.84412 1.33983i 0.0750985 0.0545623i
\(604\) 0 0
\(605\) −0.980320 1.51131i −0.0398557 0.0614436i
\(606\) 0 0
\(607\) −8.08900 + 5.87700i −0.328322 + 0.238540i −0.739718 0.672917i \(-0.765041\pi\)
0.411396 + 0.911457i \(0.365041\pi\)
\(608\) 0 0
\(609\) 2.27839 7.01215i 0.0923249 0.284147i
\(610\) 0 0
\(611\) 12.7020 + 9.22855i 0.513868 + 0.373347i
\(612\) 0 0
\(613\) 12.3469 + 37.9997i 0.498685 + 1.53479i 0.811134 + 0.584860i \(0.198851\pi\)
−0.312449 + 0.949934i \(0.601149\pi\)
\(614\) 0 0
\(615\) 0.0941059 0.00379471
\(616\) 0 0
\(617\) −28.5485 −1.14932 −0.574660 0.818392i \(-0.694866\pi\)
−0.574660 + 0.818392i \(0.694866\pi\)
\(618\) 0 0
\(619\) −4.02429 12.3855i −0.161750 0.497815i 0.837032 0.547154i \(-0.184289\pi\)
−0.998782 + 0.0493385i \(0.984289\pi\)
\(620\) 0 0
\(621\) 2.11715 + 1.53820i 0.0849582 + 0.0617257i
\(622\) 0 0
\(623\) −6.82857 + 21.0162i −0.273581 + 0.841996i
\(624\) 0 0
\(625\) −19.9006 + 14.4586i −0.796022 + 0.578344i
\(626\) 0 0
\(627\) −13.4886 28.2987i −0.538683 1.13014i
\(628\) 0 0
\(629\) 71.0714 51.6364i 2.83380 2.05888i
\(630\) 0 0
\(631\) 6.00401 18.4784i 0.239016 0.735615i −0.757547 0.652780i \(-0.773603\pi\)
0.996563 0.0828350i \(-0.0263974\pi\)
\(632\) 0 0
\(633\) −19.0466 13.8381i −0.757032 0.550016i
\(634\) 0 0
\(635\) −0.866325 2.66628i −0.0343791 0.105808i
\(636\) 0 0
\(637\) 14.1617 0.561108
\(638\) 0 0
\(639\) −14.4712 −0.572473
\(640\) 0 0
\(641\) −4.50108 13.8529i −0.177782 0.547156i 0.821968 0.569534i \(-0.192876\pi\)
−0.999750 + 0.0223779i \(0.992876\pi\)
\(642\) 0 0
\(643\) −2.92158 2.12265i −0.115216 0.0837092i 0.528685 0.848818i \(-0.322685\pi\)
−0.643901 + 0.765109i \(0.722685\pi\)
\(644\) 0 0
\(645\) 0.446609 1.37452i 0.0175852 0.0541217i
\(646\) 0 0
\(647\) −5.38652 + 3.91354i −0.211766 + 0.153857i −0.688612 0.725130i \(-0.741780\pi\)
0.476846 + 0.878987i \(0.341780\pi\)
\(648\) 0 0
\(649\) −9.00564 4.89275i −0.353502 0.192057i
\(650\) 0 0
\(651\) −31.3044 + 22.7440i −1.22692 + 0.891408i
\(652\) 0 0
\(653\) 0.814815 2.50774i 0.0318862 0.0981356i −0.933847 0.357673i \(-0.883570\pi\)
0.965733 + 0.259538i \(0.0835702\pi\)
\(654\) 0 0
\(655\) −0.665548 0.483549i −0.0260051 0.0188938i
\(656\) 0 0
\(657\) −4.18096 12.8677i −0.163115 0.502015i
\(658\) 0 0
\(659\) −18.2059 −0.709200 −0.354600 0.935018i \(-0.615383\pi\)
−0.354600 + 0.935018i \(0.615383\pi\)
\(660\) 0 0
\(661\) 37.6750 1.46539 0.732693 0.680559i \(-0.238263\pi\)
0.732693 + 0.680559i \(0.238263\pi\)
\(662\) 0 0
\(663\) −12.9088 39.7293i −0.501337 1.54296i
\(664\) 0 0
\(665\) 2.14207 + 1.55630i 0.0830658 + 0.0603509i
\(666\) 0 0
\(667\) −0.224509 + 0.690968i −0.00869303 + 0.0267544i
\(668\) 0 0
\(669\) 26.9397 19.5728i 1.04155 0.756730i
\(670\) 0 0
\(671\) −16.6809 + 15.8212i −0.643958 + 0.610769i
\(672\) 0 0
\(673\) −13.9996 + 10.1713i −0.539644 + 0.392074i −0.823953 0.566658i \(-0.808236\pi\)
0.284309 + 0.958733i \(0.408236\pi\)
\(674\) 0 0
\(675\) 5.69555 17.5291i 0.219222 0.674695i
\(676\) 0 0
\(677\) −7.77933 5.65202i −0.298984 0.217225i 0.428171 0.903698i \(-0.359158\pi\)
−0.727155 + 0.686473i \(0.759158\pi\)
\(678\) 0 0
\(679\) −7.57910 23.3261i −0.290859 0.895172i
\(680\) 0 0
\(681\) −12.7062 −0.486902
\(682\) 0 0
\(683\) 33.2554 1.27248 0.636241 0.771491i \(-0.280489\pi\)
0.636241 + 0.771491i \(0.280489\pi\)
\(684\) 0 0
\(685\) −0.152095 0.468101i −0.00581126 0.0178852i
\(686\) 0 0
\(687\) 34.1774 + 24.8314i 1.30395 + 0.947375i
\(688\) 0 0
\(689\) 8.21748 25.2908i 0.313061 0.963502i
\(690\) 0 0
\(691\) 13.7945 10.0223i 0.524768 0.381266i −0.293629 0.955919i \(-0.594863\pi\)
0.818397 + 0.574653i \(0.194863\pi\)
\(692\) 0 0
\(693\) −13.6920 + 1.79889i −0.520115 + 0.0683344i
\(694\) 0 0
\(695\) 0.710221 0.516006i 0.0269402 0.0195732i
\(696\) 0 0
\(697\) 0.657340 2.02308i 0.0248985 0.0766297i
\(698\) 0 0
\(699\) 17.0110 + 12.3592i 0.643414 + 0.467468i
\(700\) 0 0
\(701\) −11.3166 34.8289i −0.427422 1.31547i −0.900656 0.434533i \(-0.856913\pi\)
0.473234 0.880937i \(-0.343087\pi\)
\(702\) 0 0
\(703\) −53.5442 −2.01946
\(704\) 0 0
\(705\) 1.95368 0.0735798
\(706\) 0 0
\(707\) −4.35278 13.3965i −0.163703 0.503826i
\(708\) 0 0
\(709\) −15.8194 11.4935i −0.594112 0.431647i 0.249672 0.968330i \(-0.419677\pi\)
−0.843784 + 0.536683i \(0.819677\pi\)
\(710\) 0 0
\(711\) 0.634826 1.95379i 0.0238078 0.0732729i
\(712\) 0 0
\(713\) 3.08470 2.24116i 0.115523 0.0839323i
\(714\) 0 0
\(715\) −0.267007 + 1.43851i −0.00998549 + 0.0537974i
\(716\) 0 0
\(717\) −33.1870 + 24.1118i −1.23939 + 0.900470i
\(718\) 0 0
\(719\) −1.09209 + 3.36110i −0.0407280 + 0.125348i −0.969353 0.245671i \(-0.920992\pi\)
0.928625 + 0.371019i \(0.120992\pi\)
\(720\) 0 0
\(721\) −42.6692 31.0010i −1.58908 1.15454i
\(722\) 0 0
\(723\) −4.34915 13.3853i −0.161747 0.497805i
\(724\) 0 0
\(725\) 5.11695 0.190039
\(726\) 0 0
\(727\) −5.02836 −0.186491 −0.0932457 0.995643i \(-0.529724\pi\)
−0.0932457 + 0.995643i \(0.529724\pi\)
\(728\) 0 0
\(729\) 2.93320 + 9.02746i 0.108637 + 0.334350i
\(730\) 0 0
\(731\) −26.4298 19.2024i −0.977540 0.710225i
\(732\) 0 0
\(733\) −3.52505 + 10.8490i −0.130201 + 0.400716i −0.994813 0.101724i \(-0.967564\pi\)
0.864612 + 0.502440i \(0.167564\pi\)
\(734\) 0 0
\(735\) 1.42565 1.03580i 0.0525859 0.0382059i
\(736\) 0 0
\(737\) −1.16009 + 6.25007i −0.0427326 + 0.230224i
\(738\) 0 0
\(739\) 3.65966 2.65890i 0.134623 0.0978091i −0.518436 0.855116i \(-0.673486\pi\)
0.653059 + 0.757307i \(0.273486\pi\)
\(740\) 0 0
\(741\) −7.86796 + 24.2151i −0.289037 + 0.889564i
\(742\) 0 0
\(743\) 19.5365 + 14.1941i 0.716725 + 0.520731i 0.885336 0.464952i \(-0.153928\pi\)
−0.168611 + 0.985683i \(0.553928\pi\)
\(744\) 0 0
\(745\) −0.294574 0.906605i −0.0107924 0.0332155i
\(746\) 0 0
\(747\) −5.60097 −0.204929
\(748\) 0 0
\(749\) −1.81673 −0.0663820
\(750\) 0 0
\(751\) −4.56162 14.0392i −0.166456 0.512298i 0.832685 0.553747i \(-0.186803\pi\)
−0.999141 + 0.0414489i \(0.986803\pi\)
\(752\) 0 0
\(753\) 8.61319 + 6.25785i 0.313882 + 0.228049i
\(754\) 0 0
\(755\) 0.184492 0.567809i 0.00671436 0.0206647i
\(756\) 0 0
\(757\) −10.2060 + 7.41508i −0.370943 + 0.269506i −0.757602 0.652717i \(-0.773629\pi\)
0.386659 + 0.922223i \(0.373629\pi\)
\(758\) 0 0
\(759\) 4.75253 0.624402i 0.172506 0.0226644i
\(760\) 0 0
\(761\) 20.0141 14.5411i 0.725509 0.527113i −0.162630 0.986687i \(-0.551998\pi\)
0.888140 + 0.459574i \(0.151998\pi\)
\(762\) 0 0
\(763\) 0.308371 0.949069i 0.0111638 0.0343586i
\(764\) 0 0
\(765\) −1.19385 0.867381i −0.0431636 0.0313602i
\(766\) 0 0
\(767\) 2.57227 + 7.91664i 0.0928794 + 0.285853i
\(768\) 0 0
\(769\) −5.37741 −0.193914 −0.0969571 0.995289i \(-0.530911\pi\)
−0.0969571 + 0.995289i \(0.530911\pi\)
\(770\) 0 0
\(771\) 38.0642 1.37085
\(772\) 0 0
\(773\) 5.02699 + 15.4715i 0.180808 + 0.556471i 0.999851 0.0172619i \(-0.00549490\pi\)
−0.819043 + 0.573733i \(0.805495\pi\)
\(774\) 0 0
\(775\) −21.7256 15.7846i −0.780407 0.566999i
\(776\) 0 0
\(777\) −25.6747 + 79.0187i −0.921076 + 2.83478i
\(778\) 0 0
\(779\) −1.04892 + 0.762081i −0.0375813 + 0.0273044i
\(780\) 0 0
\(781\) 29.2809 27.7718i 1.04775 0.993754i
\(782\) 0 0
\(783\) −3.08499 + 2.24137i −0.110248 + 0.0801002i
\(784\) 0 0
\(785\) −0.00734599 + 0.0226086i −0.000262190 + 0.000806937i
\(786\) 0 0
\(787\) −15.0196 10.9124i −0.535392 0.388985i 0.286979 0.957937i \(-0.407349\pi\)
−0.822371 + 0.568952i \(0.807349\pi\)
\(788\) 0 0
\(789\) −0.808678 2.48886i −0.0287897 0.0886056i
\(790\) 0 0
\(791\) 40.5038 1.44015
\(792\) 0 0
\(793\) 18.6725 0.663081
\(794\) 0 0
\(795\) −1.02253 3.14703i −0.0362655 0.111614i
\(796\) 0 0
\(797\) 26.0278 + 18.9103i 0.921952 + 0.669837i 0.944009 0.329919i \(-0.107022\pi\)
−0.0220572 + 0.999757i \(0.507022\pi\)
\(798\) 0 0
\(799\) 13.6467 42.0001i 0.482784 1.48586i
\(800\) 0 0
\(801\) −6.07290 + 4.41222i −0.214575 + 0.155898i
\(802\) 0 0
\(803\) 33.1541 + 18.0126i 1.16998 + 0.635650i
\(804\) 0 0
\(805\) −0.327530 + 0.237964i −0.0115439 + 0.00838714i
\(806\) 0 0
\(807\) 1.70375 5.24359i 0.0599747 0.184583i
\(808\) 0 0
\(809\) 23.4124 + 17.0101i 0.823138 + 0.598045i 0.917610 0.397483i \(-0.130116\pi\)
−0.0944717 + 0.995528i \(0.530116\pi\)
\(810\) 0 0
\(811\) −3.10198 9.54691i −0.108925 0.335237i 0.881706 0.471799i \(-0.156395\pi\)
−0.990632 + 0.136561i \(0.956395\pi\)
\(812\) 0 0
\(813\) 21.2609 0.745652
\(814\) 0 0
\(815\) −2.36450 −0.0828249
\(816\) 0 0
\(817\) 6.15309 + 18.9373i 0.215269 + 0.662531i
\(818\) 0 0
\(819\) 9.07395 + 6.59261i 0.317069 + 0.230364i
\(820\) 0 0
\(821\) −9.27874 + 28.5570i −0.323830 + 0.996647i 0.648136 + 0.761525i \(0.275549\pi\)
−0.971966 + 0.235122i \(0.924451\pi\)
\(822\) 0 0
\(823\) −24.7215 + 17.9612i −0.861738 + 0.626089i −0.928357 0.371689i \(-0.878779\pi\)
0.0666193 + 0.997778i \(0.478779\pi\)
\(824\) 0 0
\(825\) −14.5259 30.4750i −0.505728 1.06100i
\(826\) 0 0
\(827\) −4.75466 + 3.45446i −0.165336 + 0.120123i −0.667376 0.744721i \(-0.732583\pi\)
0.502041 + 0.864844i \(0.332583\pi\)
\(828\) 0 0
\(829\) −3.23670 + 9.96152i −0.112415 + 0.345978i −0.991399 0.130873i \(-0.958222\pi\)
0.878984 + 0.476851i \(0.158222\pi\)
\(830\) 0 0
\(831\) 12.1052 + 8.79496i 0.419925 + 0.305094i
\(832\) 0 0
\(833\) −12.3092 37.8837i −0.426487 1.31259i
\(834\) 0 0
\(835\) 2.85602 0.0988366
\(836\) 0 0
\(837\) 20.0124 0.691730
\(838\) 0 0
\(839\) 10.3026 + 31.7082i 0.355686 + 1.09469i 0.955610 + 0.294633i \(0.0951974\pi\)
−0.599924 + 0.800057i \(0.704803\pi\)
\(840\) 0 0
\(841\) 22.6050 + 16.4235i 0.779484 + 0.566328i
\(842\) 0 0
\(843\) −10.5912 + 32.5963i −0.364779 + 1.12267i
\(844\) 0 0
\(845\) −0.760998 + 0.552897i −0.0261791 + 0.0190203i
\(846\) 0 0
\(847\) 24.2519 29.9162i 0.833306 1.02793i
\(848\) 0 0
\(849\) −33.9096 + 24.6368i −1.16377 + 0.845532i
\(850\) 0 0
\(851\) 2.52995 7.78640i 0.0867257 0.266914i
\(852\) 0 0
\(853\) 22.4071 + 16.2797i 0.767205 + 0.557407i 0.901112 0.433587i \(-0.142752\pi\)
−0.133907 + 0.990994i \(0.542752\pi\)
\(854\) 0 0
\(855\) 0.277939 + 0.855407i 0.00950530 + 0.0292543i
\(856\) 0 0
\(857\) −2.13818 −0.0730387 −0.0365194 0.999333i \(-0.511627\pi\)
−0.0365194 + 0.999333i \(0.511627\pi\)
\(858\) 0 0
\(859\) 6.06982 0.207099 0.103550 0.994624i \(-0.466980\pi\)
0.103550 + 0.994624i \(0.466980\pi\)
\(860\) 0 0
\(861\) 0.621693 + 1.91337i 0.0211872 + 0.0652076i
\(862\) 0 0
\(863\) 24.1070 + 17.5148i 0.820613 + 0.596210i 0.916888 0.399145i \(-0.130693\pi\)
−0.0962753 + 0.995355i \(0.530693\pi\)
\(864\) 0 0
\(865\) 0.923202 2.84132i 0.0313898 0.0966079i
\(866\) 0 0
\(867\) −66.9087 + 48.6120i −2.27234 + 1.65095i
\(868\) 0 0
\(869\) 2.46503 + 5.17158i 0.0836206 + 0.175434i
\(870\) 0 0
\(871\) 4.17690 3.03469i 0.141529 0.102827i
\(872\) 0 0
\(873\) 2.57459 7.92378i 0.0871367 0.268179i
\(874\) 0 0
\(875\) 4.62604 + 3.36102i 0.156389 + 0.113623i
\(876\) 0 0
\(877\) −11.4515 35.2440i −0.386688 1.19010i −0.935248 0.353993i \(-0.884824\pi\)
0.548560 0.836111i \(-0.315176\pi\)
\(878\) 0 0
\(879\) −38.1954 −1.28830
\(880\) 0 0
\(881\) −10.6956 −0.360345 −0.180172 0.983635i \(-0.557666\pi\)
−0.180172 + 0.983635i \(0.557666\pi\)
\(882\) 0 0
\(883\) 4.97395 + 15.3082i 0.167387 + 0.515163i 0.999204 0.0398858i \(-0.0126994\pi\)
−0.831818 + 0.555049i \(0.812699\pi\)
\(884\) 0 0
\(885\) 0.837975 + 0.608825i 0.0281682 + 0.0204654i
\(886\) 0 0
\(887\) −8.12229 + 24.9978i −0.272720 + 0.839345i 0.717094 + 0.696977i \(0.245472\pi\)
−0.989814 + 0.142369i \(0.954528\pi\)
\(888\) 0 0
\(889\) 48.4879 35.2285i 1.62623 1.18153i
\(890\) 0 0
\(891\) 32.5044 + 17.6596i 1.08894 + 0.591619i
\(892\) 0 0
\(893\) −21.7760 + 15.8212i −0.728704 + 0.529435i
\(894\) 0 0
\(895\) −0.462944 + 1.42480i −0.0154745 + 0.0476257i
\(896\) 0 0
\(897\) −3.14960 2.28832i −0.105162 0.0764046i
\(898\) 0 0
\(899\) 1.71688 + 5.28401i 0.0572611 + 0.176232i
\(900\) 0 0
\(901\) −74.7972 −2.49186
\(902\) 0 0
\(903\) 30.8974 1.02820
\(904\) 0 0
\(905\) 0.842090 + 2.59169i 0.0279920 + 0.0861506i
\(906\) 0 0
\(907\) −5.33332 3.87489i −0.177090 0.128663i 0.495709 0.868489i \(-0.334908\pi\)
−0.672799 + 0.739825i \(0.734908\pi\)
\(908\) 0 0
\(909\) 1.47862 4.55073i 0.0490428 0.150938i
\(910\) 0 0
\(911\) −35.7326 + 25.9613i −1.18387 + 0.860135i −0.992603 0.121402i \(-0.961261\pi\)
−0.191271 + 0.981537i \(0.561261\pi\)
\(912\) 0 0
\(913\) 11.3329 10.7488i 0.375065 0.355735i
\(914\) 0 0
\(915\) 1.87975 1.36572i 0.0621425 0.0451492i
\(916\) 0 0
\(917\) 5.43477 16.7265i 0.179472 0.552358i
\(918\) 0 0
\(919\) 25.4641 + 18.5008i 0.839983 + 0.610284i 0.922366 0.386317i \(-0.126253\pi\)
−0.0823828 + 0.996601i \(0.526253\pi\)
\(920\) 0 0
\(921\) 10.2970 + 31.6910i 0.339299 + 1.04425i
\(922\) 0 0
\(923\) −32.7770 −1.07887
\(924\) 0 0
\(925\) −57.6620 −1.89592
\(926\) 0 0
\(927\) −5.53643 17.0394i −0.181840 0.559646i
\(928\) 0 0
\(929\) 26.2675 + 19.0845i 0.861810 + 0.626142i 0.928377 0.371640i \(-0.121204\pi\)
−0.0665666 + 0.997782i \(0.521204\pi\)
\(930\) 0 0
\(931\) −7.50246 + 23.0902i −0.245883 + 0.756751i
\(932\) 0 0
\(933\) 17.3074 12.5745i 0.566617 0.411672i
\(934\) 0 0
\(935\) 4.08021 0.536071i 0.133437 0.0175314i
\(936\) 0 0
\(937\) 23.4691 17.0513i 0.766701 0.557041i −0.134257 0.990947i \(-0.542865\pi\)
0.900958 + 0.433905i \(0.142865\pi\)
\(938\) 0 0
\(939\) 5.32762 16.3967i 0.173860 0.535087i
\(940\) 0 0
\(941\) −4.76511 3.46205i −0.155338 0.112860i 0.507401 0.861710i \(-0.330606\pi\)
−0.662739 + 0.748850i \(0.730606\pi\)
\(942\) 0 0
\(943\) −0.0612608 0.188541i −0.00199493 0.00613975i
\(944\) 0 0
\(945\) −2.12489 −0.0691228
\(946\) 0 0
\(947\) −52.2319 −1.69731 −0.848655 0.528947i \(-0.822587\pi\)
−0.848655 + 0.528947i \(0.822587\pi\)
\(948\) 0 0
\(949\) −9.46977 29.1450i −0.307402 0.946085i
\(950\) 0 0
\(951\) −35.5493 25.8281i −1.15277 0.837534i
\(952\) 0 0
\(953\) −11.8723 + 36.5391i −0.384581 + 1.18362i 0.552203 + 0.833710i \(0.313787\pi\)
−0.936784 + 0.349909i \(0.886213\pi\)
\(954\) 0 0
\(955\) 1.01714 0.738997i 0.0329139 0.0239134i
\(956\) 0 0
\(957\) −1.27467 + 6.86734i −0.0412041 + 0.221990i
\(958\) 0 0
\(959\) 8.51271 6.18485i 0.274890 0.199719i
\(960\) 0 0
\(961\) −0.569149 + 1.75166i −0.0183596 + 0.0565052i
\(962\) 0 0
\(963\) −0.499275 0.362745i −0.0160889 0.0116893i
\(964\) 0 0
\(965\) −0.995400 3.06352i −0.0320430 0.0986183i
\(966\) 0 0
\(967\) −50.8436 −1.63502 −0.817509 0.575915i \(-0.804646\pi\)
−0.817509 + 0.575915i \(0.804646\pi\)
\(968\) 0 0
\(969\) 71.6159 2.30063
\(970\) 0 0
\(971\) 2.44121 + 7.51327i 0.0783422 + 0.241112i 0.982556 0.185968i \(-0.0595421\pi\)
−0.904214 + 0.427080i \(0.859542\pi\)
\(972\) 0 0
\(973\) 15.1834 + 11.0314i 0.486759 + 0.353651i
\(974\) 0 0
\(975\) −8.47304 + 26.0773i −0.271354 + 0.835143i
\(976\) 0 0
\(977\) 12.9596 9.41571i 0.414615 0.301235i −0.360853 0.932623i \(-0.617514\pi\)
0.775467 + 0.631388i \(0.217514\pi\)
\(978\) 0 0
\(979\) 3.82032 20.5822i 0.122098 0.657809i
\(980\) 0 0
\(981\) 0.274246 0.199251i 0.00875599 0.00636160i
\(982\) 0 0
\(983\) 18.0716 55.6186i 0.576394 1.77396i −0.0549895 0.998487i \(-0.517513\pi\)
0.631383 0.775471i \(-0.282487\pi\)
\(984\) 0 0
\(985\) 3.01359 + 2.18950i 0.0960209 + 0.0697633i
\(986\) 0 0
\(987\) 12.9066 + 39.7225i 0.410822 + 1.26438i
\(988\) 0 0
\(989\) −3.04459 −0.0968123
\(990\) 0 0
\(991\) 17.1741 0.545552 0.272776 0.962078i \(-0.412058\pi\)
0.272776 + 0.962078i \(0.412058\pi\)
\(992\) 0 0
\(993\) −13.6271 41.9400i −0.432443 1.33092i
\(994\) 0 0
\(995\) −0.908538 0.660092i −0.0288026 0.0209263i
\(996\) 0 0
\(997\) −12.8382 + 39.5118i −0.406588 + 1.25135i 0.512973 + 0.858405i \(0.328544\pi\)
−0.919562 + 0.392946i \(0.871456\pi\)
\(998\) 0 0
\(999\) 34.7642 25.2577i 1.09989 0.799117i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.2.m.d.113.2 8
4.3 odd 2 88.2.i.b.25.1 8
8.3 odd 2 704.2.m.l.641.2 8
8.5 even 2 704.2.m.i.641.1 8
11.2 odd 10 1936.2.a.bc.1.4 4
11.4 even 5 inner 176.2.m.d.81.2 8
11.9 even 5 1936.2.a.bb.1.4 4
12.11 even 2 792.2.r.g.289.1 8
44.3 odd 10 968.2.i.s.753.2 8
44.7 even 10 968.2.i.p.81.1 8
44.15 odd 10 88.2.i.b.81.1 yes 8
44.19 even 10 968.2.i.t.753.2 8
44.27 odd 10 968.2.i.s.9.2 8
44.31 odd 10 968.2.a.n.1.1 4
44.35 even 10 968.2.a.m.1.1 4
44.39 even 10 968.2.i.t.9.2 8
44.43 even 2 968.2.i.p.729.1 8
88.13 odd 10 7744.2.a.ds.1.1 4
88.35 even 10 7744.2.a.dh.1.4 4
88.37 even 10 704.2.m.i.257.1 8
88.53 even 10 7744.2.a.dr.1.1 4
88.59 odd 10 704.2.m.l.257.2 8
88.75 odd 10 7744.2.a.di.1.4 4
132.35 odd 10 8712.2.a.cd.1.3 4
132.59 even 10 792.2.r.g.433.1 8
132.119 even 10 8712.2.a.ce.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.b.25.1 8 4.3 odd 2
88.2.i.b.81.1 yes 8 44.15 odd 10
176.2.m.d.81.2 8 11.4 even 5 inner
176.2.m.d.113.2 8 1.1 even 1 trivial
704.2.m.i.257.1 8 88.37 even 10
704.2.m.i.641.1 8 8.5 even 2
704.2.m.l.257.2 8 88.59 odd 10
704.2.m.l.641.2 8 8.3 odd 2
792.2.r.g.289.1 8 12.11 even 2
792.2.r.g.433.1 8 132.59 even 10
968.2.a.m.1.1 4 44.35 even 10
968.2.a.n.1.1 4 44.31 odd 10
968.2.i.p.81.1 8 44.7 even 10
968.2.i.p.729.1 8 44.43 even 2
968.2.i.s.9.2 8 44.27 odd 10
968.2.i.s.753.2 8 44.3 odd 10
968.2.i.t.9.2 8 44.39 even 10
968.2.i.t.753.2 8 44.19 even 10
1936.2.a.bb.1.4 4 11.9 even 5
1936.2.a.bc.1.4 4 11.2 odd 10
7744.2.a.dh.1.4 4 88.35 even 10
7744.2.a.di.1.4 4 88.75 odd 10
7744.2.a.dr.1.1 4 88.53 even 10
7744.2.a.ds.1.1 4 88.13 odd 10
8712.2.a.cd.1.3 4 132.35 odd 10
8712.2.a.ce.1.3 4 132.119 even 10