Properties

Label 7744.2.a.dr.1.1
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.5225.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.26498\) of defining polynomial
Character \(\chi\) \(=\) 7744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.04678 q^{3} +0.163765 q^{5} -3.50105 q^{7} +1.18929 q^{9} -2.69372 q^{13} -0.335190 q^{15} -7.57673 q^{17} +4.61803 q^{19} +7.16586 q^{21} +0.706114 q^{23} -4.97318 q^{25} +3.70611 q^{27} +1.02891 q^{29} -5.39983 q^{31} -0.573348 q^{35} -11.5946 q^{37} +5.51344 q^{39} -0.280754 q^{41} +4.31175 q^{43} +0.194764 q^{45} -5.82857 q^{47} +5.25732 q^{49} +15.5079 q^{51} -9.87197 q^{53} -9.45208 q^{57} -3.09017 q^{59} -6.93188 q^{61} -4.16376 q^{63} -0.441137 q^{65} +1.91665 q^{67} -1.44526 q^{69} -12.1679 q^{71} -11.3764 q^{73} +10.1790 q^{75} +1.72736 q^{79} -11.1535 q^{81} +4.70950 q^{83} -1.24080 q^{85} -2.10595 q^{87} +6.31175 q^{89} +9.43083 q^{91} +11.0522 q^{93} +0.756272 q^{95} +7.00547 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - q^{5} - q^{7} + 6 q^{9} - q^{13} - 16 q^{15} - 12 q^{17} + 14 q^{19} + q^{21} + 2 q^{23} + 11 q^{25} + 14 q^{27} + 9 q^{29} - 11 q^{31} + 18 q^{35} - 13 q^{37} + 18 q^{39} - 8 q^{41}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.04678 −1.18171 −0.590853 0.806779i \(-0.701209\pi\)
−0.590853 + 0.806779i \(0.701209\pi\)
\(4\) 0 0
\(5\) 0.163765 0.0732379 0.0366189 0.999329i \(-0.488341\pi\)
0.0366189 + 0.999329i \(0.488341\pi\)
\(6\) 0 0
\(7\) −3.50105 −1.32327 −0.661635 0.749826i \(-0.730137\pi\)
−0.661635 + 0.749826i \(0.730137\pi\)
\(8\) 0 0
\(9\) 1.18929 0.396431
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.69372 −0.747103 −0.373552 0.927609i \(-0.621860\pi\)
−0.373552 + 0.927609i \(0.621860\pi\)
\(14\) 0 0
\(15\) −0.335190 −0.0865457
\(16\) 0 0
\(17\) −7.57673 −1.83763 −0.918814 0.394692i \(-0.870851\pi\)
−0.918814 + 0.394692i \(0.870851\pi\)
\(18\) 0 0
\(19\) 4.61803 1.05945 0.529725 0.848170i \(-0.322295\pi\)
0.529725 + 0.848170i \(0.322295\pi\)
\(20\) 0 0
\(21\) 7.16586 1.56372
\(22\) 0 0
\(23\) 0.706114 0.147235 0.0736174 0.997287i \(-0.476546\pi\)
0.0736174 + 0.997287i \(0.476546\pi\)
\(24\) 0 0
\(25\) −4.97318 −0.994636
\(26\) 0 0
\(27\) 3.70611 0.713242
\(28\) 0 0
\(29\) 1.02891 0.191064 0.0955318 0.995426i \(-0.469545\pi\)
0.0955318 + 0.995426i \(0.469545\pi\)
\(30\) 0 0
\(31\) −5.39983 −0.969839 −0.484919 0.874559i \(-0.661151\pi\)
−0.484919 + 0.874559i \(0.661151\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.573348 −0.0969135
\(36\) 0 0
\(37\) −11.5946 −1.90614 −0.953070 0.302750i \(-0.902095\pi\)
−0.953070 + 0.302750i \(0.902095\pi\)
\(38\) 0 0
\(39\) 5.51344 0.882857
\(40\) 0 0
\(41\) −0.280754 −0.0438464 −0.0219232 0.999760i \(-0.506979\pi\)
−0.0219232 + 0.999760i \(0.506979\pi\)
\(42\) 0 0
\(43\) 4.31175 0.657536 0.328768 0.944411i \(-0.393367\pi\)
0.328768 + 0.944411i \(0.393367\pi\)
\(44\) 0 0
\(45\) 0.194764 0.0290337
\(46\) 0 0
\(47\) −5.82857 −0.850185 −0.425093 0.905150i \(-0.639758\pi\)
−0.425093 + 0.905150i \(0.639758\pi\)
\(48\) 0 0
\(49\) 5.25732 0.751045
\(50\) 0 0
\(51\) 15.5079 2.17154
\(52\) 0 0
\(53\) −9.87197 −1.35602 −0.678010 0.735053i \(-0.737157\pi\)
−0.678010 + 0.735053i \(0.737157\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −9.45208 −1.25196
\(58\) 0 0
\(59\) −3.09017 −0.402306 −0.201153 0.979560i \(-0.564469\pi\)
−0.201153 + 0.979560i \(0.564469\pi\)
\(60\) 0 0
\(61\) −6.93188 −0.887536 −0.443768 0.896142i \(-0.646359\pi\)
−0.443768 + 0.896142i \(0.646359\pi\)
\(62\) 0 0
\(63\) −4.16376 −0.524585
\(64\) 0 0
\(65\) −0.441137 −0.0547163
\(66\) 0 0
\(67\) 1.91665 0.234157 0.117078 0.993123i \(-0.462647\pi\)
0.117078 + 0.993123i \(0.462647\pi\)
\(68\) 0 0
\(69\) −1.44526 −0.173988
\(70\) 0 0
\(71\) −12.1679 −1.44407 −0.722035 0.691857i \(-0.756793\pi\)
−0.722035 + 0.691857i \(0.756793\pi\)
\(72\) 0 0
\(73\) −11.3764 −1.33151 −0.665753 0.746172i \(-0.731890\pi\)
−0.665753 + 0.746172i \(0.731890\pi\)
\(74\) 0 0
\(75\) 10.1790 1.17537
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.72736 0.194343 0.0971717 0.995268i \(-0.469020\pi\)
0.0971717 + 0.995268i \(0.469020\pi\)
\(80\) 0 0
\(81\) −11.1535 −1.23927
\(82\) 0 0
\(83\) 4.70950 0.516934 0.258467 0.966020i \(-0.416783\pi\)
0.258467 + 0.966020i \(0.416783\pi\)
\(84\) 0 0
\(85\) −1.24080 −0.134584
\(86\) 0 0
\(87\) −2.10595 −0.225781
\(88\) 0 0
\(89\) 6.31175 0.669044 0.334522 0.942388i \(-0.391425\pi\)
0.334522 + 0.942388i \(0.391425\pi\)
\(90\) 0 0
\(91\) 9.43083 0.988620
\(92\) 0 0
\(93\) 11.0522 1.14606
\(94\) 0 0
\(95\) 0.756272 0.0775918
\(96\) 0 0
\(97\) 7.00547 0.711298 0.355649 0.934620i \(-0.384260\pi\)
0.355649 + 0.934620i \(0.384260\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.02334 −0.400337 −0.200169 0.979761i \(-0.564149\pi\)
−0.200169 + 0.979761i \(0.564149\pi\)
\(102\) 0 0
\(103\) −15.0646 −1.48436 −0.742182 0.670199i \(-0.766209\pi\)
−0.742182 + 0.670199i \(0.766209\pi\)
\(104\) 0 0
\(105\) 1.17352 0.114523
\(106\) 0 0
\(107\) −0.518912 −0.0501651 −0.0250826 0.999685i \(-0.507985\pi\)
−0.0250826 + 0.999685i \(0.507985\pi\)
\(108\) 0 0
\(109\) 0.285032 0.0273011 0.0136506 0.999907i \(-0.495655\pi\)
0.0136506 + 0.999907i \(0.495655\pi\)
\(110\) 0 0
\(111\) 23.7315 2.25250
\(112\) 0 0
\(113\) −11.5691 −1.08833 −0.544163 0.838979i \(-0.683153\pi\)
−0.544163 + 0.838979i \(0.683153\pi\)
\(114\) 0 0
\(115\) 0.115637 0.0107832
\(116\) 0 0
\(117\) −3.20362 −0.296175
\(118\) 0 0
\(119\) 26.5265 2.43168
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0.574640 0.0518135
\(124\) 0 0
\(125\) −1.63326 −0.146083
\(126\) 0 0
\(127\) 17.1190 1.51906 0.759532 0.650470i \(-0.225428\pi\)
0.759532 + 0.650470i \(0.225428\pi\)
\(128\) 0 0
\(129\) −8.82519 −0.777015
\(130\) 0 0
\(131\) 5.02344 0.438900 0.219450 0.975624i \(-0.429574\pi\)
0.219450 + 0.975624i \(0.429574\pi\)
\(132\) 0 0
\(133\) −16.1679 −1.40194
\(134\) 0 0
\(135\) 0.606931 0.0522363
\(136\) 0 0
\(137\) 3.00547 0.256775 0.128387 0.991724i \(-0.459020\pi\)
0.128387 + 0.991724i \(0.459020\pi\)
\(138\) 0 0
\(139\) −5.36062 −0.454682 −0.227341 0.973815i \(-0.573003\pi\)
−0.227341 + 0.973815i \(0.573003\pi\)
\(140\) 0 0
\(141\) 11.9298 1.00467
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0.168499 0.0139931
\(146\) 0 0
\(147\) −10.7605 −0.887515
\(148\) 0 0
\(149\) −5.82091 −0.476868 −0.238434 0.971159i \(-0.576634\pi\)
−0.238434 + 0.971159i \(0.576634\pi\)
\(150\) 0 0
\(151\) −3.64565 −0.296679 −0.148339 0.988937i \(-0.547393\pi\)
−0.148339 + 0.988937i \(0.547393\pi\)
\(152\) 0 0
\(153\) −9.01094 −0.728492
\(154\) 0 0
\(155\) −0.884303 −0.0710289
\(156\) 0 0
\(157\) −0.145160 −0.0115850 −0.00579252 0.999983i \(-0.501844\pi\)
−0.00579252 + 0.999983i \(0.501844\pi\)
\(158\) 0 0
\(159\) 20.2057 1.60242
\(160\) 0 0
\(161\) −2.47214 −0.194832
\(162\) 0 0
\(163\) −14.4384 −1.13090 −0.565451 0.824782i \(-0.691298\pi\)
−0.565451 + 0.824782i \(0.691298\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.4397 −1.34953 −0.674764 0.738034i \(-0.735755\pi\)
−0.674764 + 0.738034i \(0.735755\pi\)
\(168\) 0 0
\(169\) −5.74388 −0.441837
\(170\) 0 0
\(171\) 5.49219 0.419998
\(172\) 0 0
\(173\) 18.2429 1.38698 0.693491 0.720466i \(-0.256072\pi\)
0.693491 + 0.720466i \(0.256072\pi\)
\(174\) 0 0
\(175\) 17.4113 1.31617
\(176\) 0 0
\(177\) 6.32489 0.475408
\(178\) 0 0
\(179\) −9.14799 −0.683753 −0.341876 0.939745i \(-0.611062\pi\)
−0.341876 + 0.939745i \(0.611062\pi\)
\(180\) 0 0
\(181\) 16.6401 1.23685 0.618424 0.785845i \(-0.287772\pi\)
0.618424 + 0.785845i \(0.287772\pi\)
\(182\) 0 0
\(183\) 14.1880 1.04881
\(184\) 0 0
\(185\) −1.89879 −0.139602
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −12.9753 −0.943812
\(190\) 0 0
\(191\) 7.67720 0.555503 0.277752 0.960653i \(-0.410411\pi\)
0.277752 + 0.960653i \(0.410411\pi\)
\(192\) 0 0
\(193\) 19.6695 1.41584 0.707922 0.706290i \(-0.249633\pi\)
0.707922 + 0.706290i \(0.249633\pi\)
\(194\) 0 0
\(195\) 0.902908 0.0646586
\(196\) 0 0
\(197\) −22.7460 −1.62059 −0.810294 0.586024i \(-0.800692\pi\)
−0.810294 + 0.586024i \(0.800692\pi\)
\(198\) 0 0
\(199\) −6.85748 −0.486114 −0.243057 0.970012i \(-0.578150\pi\)
−0.243057 + 0.970012i \(0.578150\pi\)
\(200\) 0 0
\(201\) −3.92296 −0.276704
\(202\) 0 0
\(203\) −3.60226 −0.252829
\(204\) 0 0
\(205\) −0.0459776 −0.00321122
\(206\) 0 0
\(207\) 0.839775 0.0583684
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −11.5024 −0.791858 −0.395929 0.918281i \(-0.629577\pi\)
−0.395929 + 0.918281i \(0.629577\pi\)
\(212\) 0 0
\(213\) 24.9051 1.70647
\(214\) 0 0
\(215\) 0.706114 0.0481566
\(216\) 0 0
\(217\) 18.9051 1.28336
\(218\) 0 0
\(219\) 23.2849 1.57345
\(220\) 0 0
\(221\) 20.4096 1.37290
\(222\) 0 0
\(223\) −16.2692 −1.08946 −0.544732 0.838610i \(-0.683368\pi\)
−0.544732 + 0.838610i \(0.683368\pi\)
\(224\) 0 0
\(225\) −5.91456 −0.394304
\(226\) 0 0
\(227\) 6.20790 0.412033 0.206016 0.978549i \(-0.433950\pi\)
0.206016 + 0.978549i \(0.433950\pi\)
\(228\) 0 0
\(229\) 20.6401 1.36393 0.681967 0.731382i \(-0.261125\pi\)
0.681967 + 0.731382i \(0.261125\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.2731 −0.673013 −0.336506 0.941681i \(-0.609245\pi\)
−0.336506 + 0.941681i \(0.609245\pi\)
\(234\) 0 0
\(235\) −0.954516 −0.0622657
\(236\) 0 0
\(237\) −3.53552 −0.229657
\(238\) 0 0
\(239\) 20.0419 1.29641 0.648203 0.761468i \(-0.275521\pi\)
0.648203 + 0.761468i \(0.275521\pi\)
\(240\) 0 0
\(241\) −6.87625 −0.442938 −0.221469 0.975167i \(-0.571085\pi\)
−0.221469 + 0.975167i \(0.571085\pi\)
\(242\) 0 0
\(243\) 11.7103 0.751216
\(244\) 0 0
\(245\) 0.860964 0.0550050
\(246\) 0 0
\(247\) −12.4397 −0.791518
\(248\) 0 0
\(249\) −9.63928 −0.610865
\(250\) 0 0
\(251\) 5.20159 0.328321 0.164161 0.986434i \(-0.447508\pi\)
0.164161 + 0.986434i \(0.447508\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 2.53964 0.159039
\(256\) 0 0
\(257\) 18.5971 1.16006 0.580029 0.814596i \(-0.303041\pi\)
0.580029 + 0.814596i \(0.303041\pi\)
\(258\) 0 0
\(259\) 40.5932 2.52234
\(260\) 0 0
\(261\) 1.22367 0.0757435
\(262\) 0 0
\(263\) −1.27857 −0.0788397 −0.0394199 0.999223i \(-0.512551\pi\)
−0.0394199 + 0.999223i \(0.512551\pi\)
\(264\) 0 0
\(265\) −1.61668 −0.0993120
\(266\) 0 0
\(267\) −12.9187 −0.790614
\(268\) 0 0
\(269\) −2.69372 −0.164239 −0.0821195 0.996622i \(-0.526169\pi\)
−0.0821195 + 0.996622i \(0.526169\pi\)
\(270\) 0 0
\(271\) 10.3875 0.630996 0.315498 0.948926i \(-0.397829\pi\)
0.315498 + 0.948926i \(0.397829\pi\)
\(272\) 0 0
\(273\) −19.3028 −1.16826
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.31046 0.439243 0.219622 0.975585i \(-0.429518\pi\)
0.219622 + 0.975585i \(0.429518\pi\)
\(278\) 0 0
\(279\) −6.42198 −0.384474
\(280\) 0 0
\(281\) −16.7452 −0.998937 −0.499468 0.866332i \(-0.666471\pi\)
−0.499468 + 0.866332i \(0.666471\pi\)
\(282\) 0 0
\(283\) −20.4783 −1.21731 −0.608656 0.793434i \(-0.708291\pi\)
−0.608656 + 0.793434i \(0.708291\pi\)
\(284\) 0 0
\(285\) −1.54792 −0.0916908
\(286\) 0 0
\(287\) 0.982932 0.0580206
\(288\) 0 0
\(289\) 40.4068 2.37687
\(290\) 0 0
\(291\) −14.3386 −0.840546
\(292\) 0 0
\(293\) 18.6613 1.09020 0.545102 0.838370i \(-0.316491\pi\)
0.545102 + 0.838370i \(0.316491\pi\)
\(294\) 0 0
\(295\) −0.506061 −0.0294640
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.90207 −0.110000
\(300\) 0 0
\(301\) −15.0956 −0.870098
\(302\) 0 0
\(303\) 8.23487 0.473081
\(304\) 0 0
\(305\) −1.13520 −0.0650012
\(306\) 0 0
\(307\) −16.2802 −0.929160 −0.464580 0.885531i \(-0.653795\pi\)
−0.464580 + 0.885531i \(0.653795\pi\)
\(308\) 0 0
\(309\) 30.8339 1.75408
\(310\) 0 0
\(311\) −10.4521 −0.592683 −0.296342 0.955082i \(-0.595767\pi\)
−0.296342 + 0.955082i \(0.595767\pi\)
\(312\) 0 0
\(313\) 8.42327 0.476111 0.238056 0.971252i \(-0.423490\pi\)
0.238056 + 0.971252i \(0.423490\pi\)
\(314\) 0 0
\(315\) −0.681878 −0.0384195
\(316\) 0 0
\(317\) −21.4686 −1.20580 −0.602898 0.797818i \(-0.705988\pi\)
−0.602898 + 0.797818i \(0.705988\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 1.06210 0.0592804
\(322\) 0 0
\(323\) −34.9896 −1.94687
\(324\) 0 0
\(325\) 13.3964 0.743096
\(326\) 0 0
\(327\) −0.583397 −0.0322619
\(328\) 0 0
\(329\) 20.4061 1.12502
\(330\) 0 0
\(331\) 21.5452 1.18423 0.592117 0.805852i \(-0.298292\pi\)
0.592117 + 0.805852i \(0.298292\pi\)
\(332\) 0 0
\(333\) −13.7894 −0.755652
\(334\) 0 0
\(335\) 0.313881 0.0171491
\(336\) 0 0
\(337\) 11.2058 0.610419 0.305210 0.952285i \(-0.401273\pi\)
0.305210 + 0.952285i \(0.401273\pi\)
\(338\) 0 0
\(339\) 23.6793 1.28608
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 6.10121 0.329434
\(344\) 0 0
\(345\) −0.236682 −0.0127425
\(346\) 0 0
\(347\) 12.5363 0.672985 0.336493 0.941686i \(-0.390759\pi\)
0.336493 + 0.941686i \(0.390759\pi\)
\(348\) 0 0
\(349\) −16.0821 −0.860853 −0.430426 0.902626i \(-0.641637\pi\)
−0.430426 + 0.902626i \(0.641637\pi\)
\(350\) 0 0
\(351\) −9.98323 −0.532865
\(352\) 0 0
\(353\) −16.9450 −0.901892 −0.450946 0.892551i \(-0.648913\pi\)
−0.450946 + 0.892551i \(0.648913\pi\)
\(354\) 0 0
\(355\) −1.99268 −0.105761
\(356\) 0 0
\(357\) −54.2938 −2.87353
\(358\) 0 0
\(359\) 24.6740 1.30224 0.651122 0.758973i \(-0.274299\pi\)
0.651122 + 0.758973i \(0.274299\pi\)
\(360\) 0 0
\(361\) 2.32624 0.122434
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.86305 −0.0975167
\(366\) 0 0
\(367\) −30.9490 −1.61552 −0.807762 0.589508i \(-0.799322\pi\)
−0.807762 + 0.589508i \(0.799322\pi\)
\(368\) 0 0
\(369\) −0.333898 −0.0173820
\(370\) 0 0
\(371\) 34.5622 1.79438
\(372\) 0 0
\(373\) 16.6908 0.864217 0.432108 0.901822i \(-0.357770\pi\)
0.432108 + 0.901822i \(0.357770\pi\)
\(374\) 0 0
\(375\) 3.34291 0.172627
\(376\) 0 0
\(377\) −2.77159 −0.142744
\(378\) 0 0
\(379\) −16.6090 −0.853146 −0.426573 0.904453i \(-0.640279\pi\)
−0.426573 + 0.904453i \(0.640279\pi\)
\(380\) 0 0
\(381\) −35.0387 −1.79509
\(382\) 0 0
\(383\) −2.72945 −0.139469 −0.0697343 0.997566i \(-0.522215\pi\)
−0.0697343 + 0.997566i \(0.522215\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.12793 0.260668
\(388\) 0 0
\(389\) 15.2712 0.774283 0.387141 0.922020i \(-0.373462\pi\)
0.387141 + 0.922020i \(0.373462\pi\)
\(390\) 0 0
\(391\) −5.35003 −0.270563
\(392\) 0 0
\(393\) −10.2819 −0.518651
\(394\) 0 0
\(395\) 0.282881 0.0142333
\(396\) 0 0
\(397\) −21.4810 −1.07810 −0.539050 0.842274i \(-0.681217\pi\)
−0.539050 + 0.842274i \(0.681217\pi\)
\(398\) 0 0
\(399\) 33.0922 1.65668
\(400\) 0 0
\(401\) −35.7778 −1.78666 −0.893328 0.449405i \(-0.851636\pi\)
−0.893328 + 0.449405i \(0.851636\pi\)
\(402\) 0 0
\(403\) 14.5456 0.724570
\(404\) 0 0
\(405\) −1.82655 −0.0907618
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 10.5601 0.522161 0.261081 0.965317i \(-0.415921\pi\)
0.261081 + 0.965317i \(0.415921\pi\)
\(410\) 0 0
\(411\) −6.15153 −0.303433
\(412\) 0 0
\(413\) 10.8188 0.532360
\(414\) 0 0
\(415\) 0.771250 0.0378592
\(416\) 0 0
\(417\) 10.9720 0.537301
\(418\) 0 0
\(419\) 29.9952 1.46536 0.732680 0.680573i \(-0.238269\pi\)
0.732680 + 0.680573i \(0.238269\pi\)
\(420\) 0 0
\(421\) 21.2049 1.03346 0.516731 0.856148i \(-0.327149\pi\)
0.516731 + 0.856148i \(0.327149\pi\)
\(422\) 0 0
\(423\) −6.93188 −0.337039
\(424\) 0 0
\(425\) 37.6805 1.82777
\(426\) 0 0
\(427\) 24.2688 1.17445
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.4577 0.648232 0.324116 0.946017i \(-0.394933\pi\)
0.324116 + 0.946017i \(0.394933\pi\)
\(432\) 0 0
\(433\) 29.9161 1.43768 0.718838 0.695178i \(-0.244674\pi\)
0.718838 + 0.695178i \(0.244674\pi\)
\(434\) 0 0
\(435\) −0.344880 −0.0165357
\(436\) 0 0
\(437\) 3.26086 0.155988
\(438\) 0 0
\(439\) 33.1644 1.58285 0.791425 0.611266i \(-0.209339\pi\)
0.791425 + 0.611266i \(0.209339\pi\)
\(440\) 0 0
\(441\) 6.25248 0.297737
\(442\) 0 0
\(443\) −27.8197 −1.32175 −0.660877 0.750495i \(-0.729815\pi\)
−0.660877 + 0.750495i \(0.729815\pi\)
\(444\) 0 0
\(445\) 1.03364 0.0489994
\(446\) 0 0
\(447\) 11.9141 0.563518
\(448\) 0 0
\(449\) −7.29588 −0.344314 −0.172157 0.985070i \(-0.555074\pi\)
−0.172157 + 0.985070i \(0.555074\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 7.46183 0.350587
\(454\) 0 0
\(455\) 1.54444 0.0724044
\(456\) 0 0
\(457\) −16.1301 −0.754534 −0.377267 0.926105i \(-0.623136\pi\)
−0.377267 + 0.926105i \(0.623136\pi\)
\(458\) 0 0
\(459\) −28.0802 −1.31067
\(460\) 0 0
\(461\) 14.4253 0.671851 0.335926 0.941888i \(-0.390951\pi\)
0.335926 + 0.941888i \(0.390951\pi\)
\(462\) 0 0
\(463\) 19.7906 0.919748 0.459874 0.887984i \(-0.347895\pi\)
0.459874 + 0.887984i \(0.347895\pi\)
\(464\) 0 0
\(465\) 1.80997 0.0839354
\(466\) 0 0
\(467\) 37.8183 1.75002 0.875012 0.484102i \(-0.160853\pi\)
0.875012 + 0.484102i \(0.160853\pi\)
\(468\) 0 0
\(469\) −6.71029 −0.309853
\(470\) 0 0
\(471\) 0.297110 0.0136901
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −22.9663 −1.05377
\(476\) 0 0
\(477\) −11.7407 −0.537568
\(478\) 0 0
\(479\) 38.3330 1.75148 0.875739 0.482785i \(-0.160375\pi\)
0.875739 + 0.482785i \(0.160375\pi\)
\(480\) 0 0
\(481\) 31.2326 1.42408
\(482\) 0 0
\(483\) 5.05991 0.230234
\(484\) 0 0
\(485\) 1.14725 0.0520940
\(486\) 0 0
\(487\) 11.4584 0.519227 0.259614 0.965713i \(-0.416405\pi\)
0.259614 + 0.965713i \(0.416405\pi\)
\(488\) 0 0
\(489\) 29.5522 1.33639
\(490\) 0 0
\(491\) 24.4874 1.10510 0.552550 0.833480i \(-0.313655\pi\)
0.552550 + 0.833480i \(0.313655\pi\)
\(492\) 0 0
\(493\) −7.79577 −0.351104
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 42.6005 1.91089
\(498\) 0 0
\(499\) 15.2088 0.680839 0.340420 0.940274i \(-0.389431\pi\)
0.340420 + 0.940274i \(0.389431\pi\)
\(500\) 0 0
\(501\) 35.6953 1.59475
\(502\) 0 0
\(503\) −26.6392 −1.18778 −0.593891 0.804545i \(-0.702409\pi\)
−0.593891 + 0.804545i \(0.702409\pi\)
\(504\) 0 0
\(505\) −0.658882 −0.0293198
\(506\) 0 0
\(507\) 11.7564 0.522121
\(508\) 0 0
\(509\) −15.2919 −0.677800 −0.338900 0.940822i \(-0.610055\pi\)
−0.338900 + 0.940822i \(0.610055\pi\)
\(510\) 0 0
\(511\) 39.8293 1.76194
\(512\) 0 0
\(513\) 17.1150 0.755644
\(514\) 0 0
\(515\) −2.46706 −0.108712
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −37.3391 −1.63901
\(520\) 0 0
\(521\) −34.6400 −1.51761 −0.758804 0.651319i \(-0.774216\pi\)
−0.758804 + 0.651319i \(0.774216\pi\)
\(522\) 0 0
\(523\) −16.7107 −0.730707 −0.365354 0.930869i \(-0.619052\pi\)
−0.365354 + 0.930869i \(0.619052\pi\)
\(524\) 0 0
\(525\) −35.6371 −1.55533
\(526\) 0 0
\(527\) 40.9131 1.78220
\(528\) 0 0
\(529\) −22.5014 −0.978322
\(530\) 0 0
\(531\) −3.67511 −0.159486
\(532\) 0 0
\(533\) 0.756272 0.0327578
\(534\) 0 0
\(535\) −0.0849796 −0.00367399
\(536\) 0 0
\(537\) 18.7239 0.807995
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 12.9233 0.555617 0.277808 0.960636i \(-0.410392\pi\)
0.277808 + 0.960636i \(0.410392\pi\)
\(542\) 0 0
\(543\) −34.0585 −1.46159
\(544\) 0 0
\(545\) 0.0466782 0.00199948
\(546\) 0 0
\(547\) 5.22204 0.223278 0.111639 0.993749i \(-0.464390\pi\)
0.111639 + 0.993749i \(0.464390\pi\)
\(548\) 0 0
\(549\) −8.24403 −0.351846
\(550\) 0 0
\(551\) 4.75154 0.202422
\(552\) 0 0
\(553\) −6.04757 −0.257169
\(554\) 0 0
\(555\) 3.88639 0.164968
\(556\) 0 0
\(557\) 11.8023 0.500080 0.250040 0.968236i \(-0.419556\pi\)
0.250040 + 0.968236i \(0.419556\pi\)
\(558\) 0 0
\(559\) −11.6147 −0.491247
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.8583 1.55339 0.776696 0.629876i \(-0.216894\pi\)
0.776696 + 0.629876i \(0.216894\pi\)
\(564\) 0 0
\(565\) −1.89461 −0.0797067
\(566\) 0 0
\(567\) 39.0488 1.63989
\(568\) 0 0
\(569\) −26.9651 −1.13043 −0.565217 0.824942i \(-0.691208\pi\)
−0.565217 + 0.824942i \(0.691208\pi\)
\(570\) 0 0
\(571\) −14.3565 −0.600801 −0.300400 0.953813i \(-0.597120\pi\)
−0.300400 + 0.953813i \(0.597120\pi\)
\(572\) 0 0
\(573\) −15.7135 −0.656442
\(574\) 0 0
\(575\) −3.51163 −0.146445
\(576\) 0 0
\(577\) 10.5941 0.441040 0.220520 0.975382i \(-0.429225\pi\)
0.220520 + 0.975382i \(0.429225\pi\)
\(578\) 0 0
\(579\) −40.2592 −1.67311
\(580\) 0 0
\(581\) −16.4882 −0.684044
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.524640 −0.0216912
\(586\) 0 0
\(587\) 19.9943 0.825254 0.412627 0.910900i \(-0.364611\pi\)
0.412627 + 0.910900i \(0.364611\pi\)
\(588\) 0 0
\(589\) −24.9366 −1.02750
\(590\) 0 0
\(591\) 46.5560 1.91506
\(592\) 0 0
\(593\) 12.8414 0.527334 0.263667 0.964614i \(-0.415068\pi\)
0.263667 + 0.964614i \(0.415068\pi\)
\(594\) 0 0
\(595\) 4.34410 0.178091
\(596\) 0 0
\(597\) 14.0357 0.574444
\(598\) 0 0
\(599\) −18.3058 −0.747954 −0.373977 0.927438i \(-0.622006\pi\)
−0.373977 + 0.927438i \(0.622006\pi\)
\(600\) 0 0
\(601\) 16.1250 0.657753 0.328876 0.944373i \(-0.393330\pi\)
0.328876 + 0.944373i \(0.393330\pi\)
\(602\) 0 0
\(603\) 2.27946 0.0928269
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9.99855 0.405829 0.202914 0.979196i \(-0.434959\pi\)
0.202914 + 0.979196i \(0.434959\pi\)
\(608\) 0 0
\(609\) 7.37301 0.298770
\(610\) 0 0
\(611\) 15.7005 0.635176
\(612\) 0 0
\(613\) −39.9553 −1.61378 −0.806889 0.590703i \(-0.798851\pi\)
−0.806889 + 0.590703i \(0.798851\pi\)
\(614\) 0 0
\(615\) 0.0941059 0.00379471
\(616\) 0 0
\(617\) −28.5485 −1.14932 −0.574660 0.818392i \(-0.694866\pi\)
−0.574660 + 0.818392i \(0.694866\pi\)
\(618\) 0 0
\(619\) 13.0229 0.523434 0.261717 0.965145i \(-0.415711\pi\)
0.261717 + 0.965145i \(0.415711\pi\)
\(620\) 0 0
\(621\) 2.61694 0.105014
\(622\) 0 0
\(623\) −22.0977 −0.885327
\(624\) 0 0
\(625\) 24.5984 0.983937
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 87.8491 3.50277
\(630\) 0 0
\(631\) 19.4294 0.773471 0.386736 0.922191i \(-0.373603\pi\)
0.386736 + 0.922191i \(0.373603\pi\)
\(632\) 0 0
\(633\) 23.5428 0.935744
\(634\) 0 0
\(635\) 2.80349 0.111253
\(636\) 0 0
\(637\) −14.1617 −0.561108
\(638\) 0 0
\(639\) −14.4712 −0.572473
\(640\) 0 0
\(641\) −14.5658 −0.575314 −0.287657 0.957734i \(-0.592876\pi\)
−0.287657 + 0.957734i \(0.592876\pi\)
\(642\) 0 0
\(643\) −3.61127 −0.142415 −0.0712073 0.997462i \(-0.522685\pi\)
−0.0712073 + 0.997462i \(0.522685\pi\)
\(644\) 0 0
\(645\) −1.44526 −0.0569069
\(646\) 0 0
\(647\) 6.65811 0.261757 0.130879 0.991398i \(-0.458220\pi\)
0.130879 + 0.991398i \(0.458220\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −38.6944 −1.51655
\(652\) 0 0
\(653\) −2.63680 −0.103186 −0.0515929 0.998668i \(-0.516430\pi\)
−0.0515929 + 0.998668i \(0.516430\pi\)
\(654\) 0 0
\(655\) 0.822663 0.0321441
\(656\) 0 0
\(657\) −13.5299 −0.527850
\(658\) 0 0
\(659\) 18.2059 0.709200 0.354600 0.935018i \(-0.384617\pi\)
0.354600 + 0.935018i \(0.384617\pi\)
\(660\) 0 0
\(661\) −37.6750 −1.46539 −0.732693 0.680559i \(-0.761737\pi\)
−0.732693 + 0.680559i \(0.761737\pi\)
\(662\) 0 0
\(663\) −41.7738 −1.62236
\(664\) 0 0
\(665\) −2.64774 −0.102675
\(666\) 0 0
\(667\) 0.726527 0.0281312
\(668\) 0 0
\(669\) 33.2993 1.28743
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 17.3044 0.667037 0.333518 0.942744i \(-0.391764\pi\)
0.333518 + 0.942744i \(0.391764\pi\)
\(674\) 0 0
\(675\) −18.4312 −0.709416
\(676\) 0 0
\(677\) −9.61579 −0.369565 −0.184782 0.982779i \(-0.559158\pi\)
−0.184782 + 0.982779i \(0.559158\pi\)
\(678\) 0 0
\(679\) −24.5265 −0.941240
\(680\) 0 0
\(681\) −12.7062 −0.486902
\(682\) 0 0
\(683\) −33.2554 −1.27248 −0.636241 0.771491i \(-0.719511\pi\)
−0.636241 + 0.771491i \(0.719511\pi\)
\(684\) 0 0
\(685\) 0.492191 0.0188056
\(686\) 0 0
\(687\) −42.2456 −1.61177
\(688\) 0 0
\(689\) 26.5923 1.01309
\(690\) 0 0
\(691\) 17.0510 0.648649 0.324324 0.945946i \(-0.394863\pi\)
0.324324 + 0.945946i \(0.394863\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.877881 −0.0332999
\(696\) 0 0
\(697\) 2.12720 0.0805733
\(698\) 0 0
\(699\) 21.0267 0.795304
\(700\) 0 0
\(701\) 36.6213 1.38317 0.691583 0.722297i \(-0.256913\pi\)
0.691583 + 0.722297i \(0.256913\pi\)
\(702\) 0 0
\(703\) −53.5442 −2.01946
\(704\) 0 0
\(705\) 1.95368 0.0735798
\(706\) 0 0
\(707\) 14.0859 0.529754
\(708\) 0 0
\(709\) −19.5539 −0.734362 −0.367181 0.930149i \(-0.619677\pi\)
−0.367181 + 0.930149i \(0.619677\pi\)
\(710\) 0 0
\(711\) 2.05434 0.0770437
\(712\) 0 0
\(713\) −3.81290 −0.142794
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −41.0214 −1.53197
\(718\) 0 0
\(719\) −3.53407 −0.131799 −0.0658994 0.997826i \(-0.520992\pi\)
−0.0658994 + 0.997826i \(0.520992\pi\)
\(720\) 0 0
\(721\) 52.7420 1.96421
\(722\) 0 0
\(723\) 14.0741 0.523423
\(724\) 0 0
\(725\) −5.11695 −0.190039
\(726\) 0 0
\(727\) −5.02836 −0.186491 −0.0932457 0.995643i \(-0.529724\pi\)
−0.0932457 + 0.995643i \(0.529724\pi\)
\(728\) 0 0
\(729\) 9.49203 0.351557
\(730\) 0 0
\(731\) −32.6690 −1.20831
\(732\) 0 0
\(733\) 11.4073 0.421338 0.210669 0.977557i \(-0.432436\pi\)
0.210669 + 0.977557i \(0.432436\pi\)
\(734\) 0 0
\(735\) −1.76220 −0.0649997
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 4.52359 0.166403 0.0832014 0.996533i \(-0.473486\pi\)
0.0832014 + 0.996533i \(0.473486\pi\)
\(740\) 0 0
\(741\) 25.4613 0.935342
\(742\) 0 0
\(743\) −24.1484 −0.885921 −0.442960 0.896541i \(-0.646072\pi\)
−0.442960 + 0.896541i \(0.646072\pi\)
\(744\) 0 0
\(745\) −0.953261 −0.0349248
\(746\) 0 0
\(747\) 5.60097 0.204929
\(748\) 0 0
\(749\) 1.81673 0.0663820
\(750\) 0 0
\(751\) −14.7617 −0.538662 −0.269331 0.963048i \(-0.586803\pi\)
−0.269331 + 0.963048i \(0.586803\pi\)
\(752\) 0 0
\(753\) −10.6465 −0.387980
\(754\) 0 0
\(755\) −0.597030 −0.0217281
\(756\) 0 0
\(757\) −12.6153 −0.458511 −0.229255 0.973366i \(-0.573629\pi\)
−0.229255 + 0.973366i \(0.573629\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24.7387 −0.896779 −0.448389 0.893838i \(-0.648002\pi\)
−0.448389 + 0.893838i \(0.648002\pi\)
\(762\) 0 0
\(763\) −0.997910 −0.0361268
\(764\) 0 0
\(765\) −1.47568 −0.0533532
\(766\) 0 0
\(767\) 8.32405 0.300564
\(768\) 0 0
\(769\) −5.37741 −0.193914 −0.0969571 0.995289i \(-0.530911\pi\)
−0.0969571 + 0.995289i \(0.530911\pi\)
\(770\) 0 0
\(771\) −38.0642 −1.37085
\(772\) 0 0
\(773\) −16.2677 −0.585108 −0.292554 0.956249i \(-0.594505\pi\)
−0.292554 + 0.956249i \(0.594505\pi\)
\(774\) 0 0
\(775\) 26.8543 0.964637
\(776\) 0 0
\(777\) −83.0852 −2.98067
\(778\) 0 0
\(779\) −1.29653 −0.0464530
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 3.81325 0.136275
\(784\) 0 0
\(785\) −0.0237721 −0.000848463 0
\(786\) 0 0
\(787\) −18.5653 −0.661781 −0.330891 0.943669i \(-0.607349\pi\)
−0.330891 + 0.943669i \(0.607349\pi\)
\(788\) 0 0
\(789\) 2.61694 0.0931654
\(790\) 0 0
\(791\) 40.5038 1.44015
\(792\) 0 0
\(793\) 18.6725 0.663081
\(794\) 0 0
\(795\) 3.30899 0.117358
\(796\) 0 0
\(797\) 32.1721 1.13960 0.569798 0.821785i \(-0.307022\pi\)
0.569798 + 0.821785i \(0.307022\pi\)
\(798\) 0 0
\(799\) 44.1615 1.56232
\(800\) 0 0
\(801\) 7.50652 0.265230
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −0.404849 −0.0142691
\(806\) 0 0
\(807\) 5.51344 0.194082
\(808\) 0 0
\(809\) −28.9394 −1.01745 −0.508727 0.860928i \(-0.669884\pi\)
−0.508727 + 0.860928i \(0.669884\pi\)
\(810\) 0 0
\(811\) 10.0382 0.352490 0.176245 0.984346i \(-0.443605\pi\)
0.176245 + 0.984346i \(0.443605\pi\)
\(812\) 0 0
\(813\) −21.2609 −0.745652
\(814\) 0 0
\(815\) −2.36450 −0.0828249
\(816\) 0 0
\(817\) 19.9118 0.696626
\(818\) 0 0
\(819\) 11.2160 0.391919
\(820\) 0 0
\(821\) 30.0266 1.04794 0.523968 0.851738i \(-0.324451\pi\)
0.523968 + 0.851738i \(0.324451\pi\)
\(822\) 0 0
\(823\) 30.5575 1.06517 0.532583 0.846378i \(-0.321221\pi\)
0.532583 + 0.846378i \(0.321221\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.87708 −0.204366 −0.102183 0.994766i \(-0.532583\pi\)
−0.102183 + 0.994766i \(0.532583\pi\)
\(828\) 0 0
\(829\) 10.4742 0.363783 0.181891 0.983319i \(-0.441778\pi\)
0.181891 + 0.983319i \(0.441778\pi\)
\(830\) 0 0
\(831\) −14.9629 −0.519056
\(832\) 0 0
\(833\) −39.8333 −1.38014
\(834\) 0 0
\(835\) −2.85602 −0.0988366
\(836\) 0 0
\(837\) −20.0124 −0.691730
\(838\) 0 0
\(839\) 33.3400 1.15102 0.575512 0.817793i \(-0.304803\pi\)
0.575512 + 0.817793i \(0.304803\pi\)
\(840\) 0 0
\(841\) −27.9413 −0.963495
\(842\) 0 0
\(843\) 34.2737 1.18045
\(844\) 0 0
\(845\) −0.940645 −0.0323592
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 41.9146 1.43850
\(850\) 0 0
\(851\) −8.18710 −0.280650
\(852\) 0 0
\(853\) 27.6967 0.948318 0.474159 0.880439i \(-0.342752\pi\)
0.474159 + 0.880439i \(0.342752\pi\)
\(854\) 0 0
\(855\) 0.899428 0.0307598
\(856\) 0 0
\(857\) −2.13818 −0.0730387 −0.0365194 0.999333i \(-0.511627\pi\)
−0.0365194 + 0.999333i \(0.511627\pi\)
\(858\) 0 0
\(859\) −6.06982 −0.207099 −0.103550 0.994624i \(-0.533020\pi\)
−0.103550 + 0.994624i \(0.533020\pi\)
\(860\) 0 0
\(861\) −2.01184 −0.0685633
\(862\) 0 0
\(863\) −29.7979 −1.01433 −0.507166 0.861848i \(-0.669307\pi\)
−0.507166 + 0.861848i \(0.669307\pi\)
\(864\) 0 0
\(865\) 2.98755 0.101580
\(866\) 0 0
\(867\) −82.7038 −2.80877
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −5.16293 −0.174939
\(872\) 0 0
\(873\) 8.33155 0.281980
\(874\) 0 0
\(875\) 5.71811 0.193307
\(876\) 0 0
\(877\) 37.0577 1.25135 0.625675 0.780084i \(-0.284824\pi\)
0.625675 + 0.780084i \(0.284824\pi\)
\(878\) 0 0
\(879\) −38.1954 −1.28830
\(880\) 0 0
\(881\) −10.6956 −0.360345 −0.180172 0.983635i \(-0.557666\pi\)
−0.180172 + 0.983635i \(0.557666\pi\)
\(882\) 0 0
\(883\) −16.0960 −0.541675 −0.270837 0.962625i \(-0.587301\pi\)
−0.270837 + 0.962625i \(0.587301\pi\)
\(884\) 0 0
\(885\) 1.03579 0.0348178
\(886\) 0 0
\(887\) −26.2843 −0.882540 −0.441270 0.897374i \(-0.645472\pi\)
−0.441270 + 0.897374i \(0.645472\pi\)
\(888\) 0 0
\(889\) −59.9343 −2.01013
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −26.9166 −0.900728
\(894\) 0 0
\(895\) −1.49812 −0.0500766
\(896\) 0 0
\(897\) 3.89312 0.129987
\(898\) 0 0
\(899\) −5.55594 −0.185301
\(900\) 0 0
\(901\) 74.7972 2.49186
\(902\) 0 0
\(903\) 30.8974 1.02820
\(904\) 0 0
\(905\) 2.72506 0.0905841
\(906\) 0 0
\(907\) −6.59235 −0.218895 −0.109448 0.993993i \(-0.534908\pi\)
−0.109448 + 0.993993i \(0.534908\pi\)
\(908\) 0 0
\(909\) −4.78492 −0.158706
\(910\) 0 0
\(911\) 44.1679 1.46335 0.731675 0.681654i \(-0.238739\pi\)
0.731675 + 0.681654i \(0.238739\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 2.32350 0.0768124
\(916\) 0 0
\(917\) −17.5873 −0.580783
\(918\) 0 0
\(919\) −31.4754 −1.03828 −0.519138 0.854690i \(-0.673747\pi\)
−0.519138 + 0.854690i \(0.673747\pi\)
\(920\) 0 0
\(921\) 33.3219 1.09799
\(922\) 0 0
\(923\) 32.7770 1.07887
\(924\) 0 0
\(925\) 57.6620 1.89592
\(926\) 0 0
\(927\) −17.9163 −0.588447
\(928\) 0 0
\(929\) −32.4685 −1.06526 −0.532628 0.846349i \(-0.678796\pi\)
−0.532628 + 0.846349i \(0.678796\pi\)
\(930\) 0 0
\(931\) 24.2785 0.795695
\(932\) 0 0
\(933\) 21.3931 0.700378
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −29.0094 −0.947695 −0.473847 0.880607i \(-0.657135\pi\)
−0.473847 + 0.880607i \(0.657135\pi\)
\(938\) 0 0
\(939\) −17.2405 −0.562624
\(940\) 0 0
\(941\) −5.88999 −0.192008 −0.0960042 0.995381i \(-0.530606\pi\)
−0.0960042 + 0.995381i \(0.530606\pi\)
\(942\) 0 0
\(943\) −0.198244 −0.00645572
\(944\) 0 0
\(945\) −2.12489 −0.0691228
\(946\) 0 0
\(947\) 52.2319 1.69731 0.848655 0.528947i \(-0.177413\pi\)
0.848655 + 0.528947i \(0.177413\pi\)
\(948\) 0 0
\(949\) 30.6448 0.994773
\(950\) 0 0
\(951\) 43.9414 1.42490
\(952\) 0 0
\(953\) −38.4195 −1.24453 −0.622265 0.782807i \(-0.713787\pi\)
−0.622265 + 0.782807i \(0.713787\pi\)
\(954\) 0 0
\(955\) 1.25726 0.0406839
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.5223 −0.339783
\(960\) 0 0
\(961\) −1.84181 −0.0594131
\(962\) 0 0
\(963\) −0.617138 −0.0198870
\(964\) 0 0
\(965\) 3.22118 0.103693
\(966\) 0 0
\(967\) −50.8436 −1.63502 −0.817509 0.575915i \(-0.804646\pi\)
−0.817509 + 0.575915i \(0.804646\pi\)
\(968\) 0 0
\(969\) 71.6159 2.30063
\(970\) 0 0
\(971\) −7.89992 −0.253521 −0.126760 0.991933i \(-0.540458\pi\)
−0.126760 + 0.991933i \(0.540458\pi\)
\(972\) 0 0
\(973\) 18.7678 0.601667
\(974\) 0 0
\(975\) −27.4193 −0.878121
\(976\) 0 0
\(977\) −16.0190 −0.512492 −0.256246 0.966612i \(-0.582486\pi\)
−0.256246 + 0.966612i \(0.582486\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.338986 0.0108230
\(982\) 0 0
\(983\) 58.4809 1.86525 0.932625 0.360848i \(-0.117513\pi\)
0.932625 + 0.360848i \(0.117513\pi\)
\(984\) 0 0
\(985\) −3.72500 −0.118688
\(986\) 0 0
\(987\) −41.7667 −1.32945
\(988\) 0 0
\(989\) 3.04459 0.0968123
\(990\) 0 0
\(991\) 17.1741 0.545552 0.272776 0.962078i \(-0.412058\pi\)
0.272776 + 0.962078i \(0.412058\pi\)
\(992\) 0 0
\(993\) −44.0983 −1.39942
\(994\) 0 0
\(995\) −1.12302 −0.0356020
\(996\) 0 0
\(997\) 41.5451 1.31575 0.657874 0.753128i \(-0.271456\pi\)
0.657874 + 0.753128i \(0.271456\pi\)
\(998\) 0 0
\(999\) −42.9709 −1.35954
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.dr.1.1 4
4.3 odd 2 7744.2.a.di.1.4 4
8.3 odd 2 968.2.a.n.1.1 4
8.5 even 2 1936.2.a.bb.1.4 4
11.5 even 5 704.2.m.i.641.1 8
11.9 even 5 704.2.m.i.257.1 8
11.10 odd 2 7744.2.a.ds.1.1 4
24.11 even 2 8712.2.a.ce.1.3 4
44.27 odd 10 704.2.m.l.641.2 8
44.31 odd 10 704.2.m.l.257.2 8
44.43 even 2 7744.2.a.dh.1.4 4
88.3 odd 10 968.2.i.s.9.2 8
88.5 even 10 176.2.m.d.113.2 8
88.19 even 10 968.2.i.t.9.2 8
88.21 odd 2 1936.2.a.bc.1.4 4
88.27 odd 10 88.2.i.b.25.1 8
88.35 even 10 968.2.i.p.81.1 8
88.43 even 2 968.2.a.m.1.1 4
88.51 even 10 968.2.i.t.753.2 8
88.53 even 10 176.2.m.d.81.2 8
88.59 odd 10 968.2.i.s.753.2 8
88.75 odd 10 88.2.i.b.81.1 yes 8
88.83 even 10 968.2.i.p.729.1 8
264.131 odd 2 8712.2.a.cd.1.3 4
264.203 even 10 792.2.r.g.289.1 8
264.251 even 10 792.2.r.g.433.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.b.25.1 8 88.27 odd 10
88.2.i.b.81.1 yes 8 88.75 odd 10
176.2.m.d.81.2 8 88.53 even 10
176.2.m.d.113.2 8 88.5 even 10
704.2.m.i.257.1 8 11.9 even 5
704.2.m.i.641.1 8 11.5 even 5
704.2.m.l.257.2 8 44.31 odd 10
704.2.m.l.641.2 8 44.27 odd 10
792.2.r.g.289.1 8 264.203 even 10
792.2.r.g.433.1 8 264.251 even 10
968.2.a.m.1.1 4 88.43 even 2
968.2.a.n.1.1 4 8.3 odd 2
968.2.i.p.81.1 8 88.35 even 10
968.2.i.p.729.1 8 88.83 even 10
968.2.i.s.9.2 8 88.3 odd 10
968.2.i.s.753.2 8 88.59 odd 10
968.2.i.t.9.2 8 88.19 even 10
968.2.i.t.753.2 8 88.51 even 10
1936.2.a.bb.1.4 4 8.5 even 2
1936.2.a.bc.1.4 4 88.21 odd 2
7744.2.a.dh.1.4 4 44.43 even 2
7744.2.a.di.1.4 4 4.3 odd 2
7744.2.a.dr.1.1 4 1.1 even 1 trivial
7744.2.a.ds.1.1 4 11.10 odd 2
8712.2.a.cd.1.3 4 264.131 odd 2
8712.2.a.ce.1.3 4 24.11 even 2