Properties

Label 792.2.r.g.289.1
Level $792$
Weight $2$
Character 792.289
Analytic conductor $6.324$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [792,2,Mod(289,792)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(792, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("792.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.r (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 289.1
Root \(0.581882 + 1.79085i\) of defining polynomial
Character \(\chi\) \(=\) 792.289
Dual form 792.2.r.g.433.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.132489 - 0.0962586i) q^{5} +(1.08188 - 3.32969i) q^{7} +(0.605270 - 3.26093i) q^{11} +(-2.17926 + 1.58333i) q^{13} +(-6.12970 - 4.45349i) q^{17} +(1.42705 + 4.39201i) q^{19} +0.706114 q^{23} +(-1.53680 - 4.72978i) q^{25} +(0.317950 - 0.978551i) q^{29} +(-4.36856 + 3.17394i) q^{31} +(-0.463848 + 0.337006i) q^{35} +(3.58293 - 11.0271i) q^{37} +(0.0867577 + 0.267013i) q^{41} +4.31175 q^{43} +(-1.80113 - 5.54330i) q^{47} +(-4.25326 - 3.09017i) q^{49} +(7.98659 - 5.80260i) q^{53} +(-0.394084 + 0.373773i) q^{55} +(0.954915 - 2.93893i) q^{59} +(-5.60801 - 4.07446i) q^{61} +0.441137 q^{65} +1.91665 q^{67} +(9.84407 + 7.15214i) q^{71} +(-3.51550 + 10.8196i) q^{73} +(-10.2031 - 5.54330i) q^{77} +(1.39747 - 1.01532i) q^{79} +(3.81006 + 2.76817i) q^{83} +(0.383429 + 1.18007i) q^{85} -6.31175 q^{89} +(2.91429 + 8.96925i) q^{91} +(0.233701 - 0.719257i) q^{95} +(-5.66755 + 4.11771i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{5} + 7 q^{7} - 7 q^{11} + 7 q^{13} - q^{17} - 2 q^{19} + 4 q^{23} - 33 q^{25} - 17 q^{29} - 13 q^{31} - 11 q^{35} + q^{37} - 9 q^{41} + 6 q^{43} + q^{47} + 3 q^{49} + 33 q^{53} + 13 q^{55}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.132489 0.0962586i −0.0592507 0.0430481i 0.557766 0.829998i \(-0.311659\pi\)
−0.617016 + 0.786950i \(0.711659\pi\)
\(6\) 0 0
\(7\) 1.08188 3.32969i 0.408913 1.25851i −0.508670 0.860962i \(-0.669863\pi\)
0.917583 0.397544i \(-0.130137\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.605270 3.26093i 0.182496 0.983207i
\(12\) 0 0
\(13\) −2.17926 + 1.58333i −0.604419 + 0.439136i −0.847445 0.530884i \(-0.821860\pi\)
0.243025 + 0.970020i \(0.421860\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.12970 4.45349i −1.48667 1.08013i −0.975330 0.220753i \(-0.929149\pi\)
−0.511342 0.859378i \(-0.670851\pi\)
\(18\) 0 0
\(19\) 1.42705 + 4.39201i 0.327388 + 1.00760i 0.970351 + 0.241699i \(0.0777048\pi\)
−0.642963 + 0.765897i \(0.722295\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.706114 0.147235 0.0736174 0.997287i \(-0.476546\pi\)
0.0736174 + 0.997287i \(0.476546\pi\)
\(24\) 0 0
\(25\) −1.53680 4.72978i −0.307359 0.945955i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.317950 0.978551i 0.0590419 0.181712i −0.917186 0.398460i \(-0.869545\pi\)
0.976228 + 0.216748i \(0.0695448\pi\)
\(30\) 0 0
\(31\) −4.36856 + 3.17394i −0.784616 + 0.570057i −0.906361 0.422505i \(-0.861151\pi\)
0.121745 + 0.992561i \(0.461151\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.463848 + 0.337006i −0.0784047 + 0.0569643i
\(36\) 0 0
\(37\) 3.58293 11.0271i 0.589030 1.81285i 0.00658248 0.999978i \(-0.497905\pi\)
0.582447 0.812869i \(-0.302095\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.0867577 + 0.267013i 0.0135493 + 0.0417004i 0.957603 0.288093i \(-0.0930211\pi\)
−0.944053 + 0.329793i \(0.893021\pi\)
\(42\) 0 0
\(43\) 4.31175 0.657536 0.328768 0.944411i \(-0.393367\pi\)
0.328768 + 0.944411i \(0.393367\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.80113 5.54330i −0.262722 0.808574i −0.992210 0.124580i \(-0.960242\pi\)
0.729488 0.683994i \(-0.239758\pi\)
\(48\) 0 0
\(49\) −4.25326 3.09017i −0.607608 0.441453i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.98659 5.80260i 1.09704 0.797048i 0.116468 0.993194i \(-0.462843\pi\)
0.980575 + 0.196146i \(0.0628428\pi\)
\(54\) 0 0
\(55\) −0.394084 + 0.373773i −0.0531382 + 0.0503996i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.954915 2.93893i 0.124319 0.382616i −0.869457 0.494008i \(-0.835531\pi\)
0.993776 + 0.111393i \(0.0355312\pi\)
\(60\) 0 0
\(61\) −5.60801 4.07446i −0.718032 0.521681i 0.167723 0.985834i \(-0.446359\pi\)
−0.885755 + 0.464154i \(0.846359\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.441137 0.0547163
\(66\) 0 0
\(67\) 1.91665 0.234157 0.117078 0.993123i \(-0.462647\pi\)
0.117078 + 0.993123i \(0.462647\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.84407 + 7.15214i 1.16828 + 0.848803i 0.990802 0.135323i \(-0.0432071\pi\)
0.177475 + 0.984125i \(0.443207\pi\)
\(72\) 0 0
\(73\) −3.51550 + 10.8196i −0.411458 + 1.26634i 0.503923 + 0.863749i \(0.331890\pi\)
−0.915381 + 0.402589i \(0.868110\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.2031 5.54330i −1.16275 0.631718i
\(78\) 0 0
\(79\) 1.39747 1.01532i 0.157227 0.114232i −0.506390 0.862305i \(-0.669020\pi\)
0.663617 + 0.748072i \(0.269020\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.81006 + 2.76817i 0.418209 + 0.303846i 0.776917 0.629603i \(-0.216783\pi\)
−0.358708 + 0.933450i \(0.616783\pi\)
\(84\) 0 0
\(85\) 0.383429 + 1.18007i 0.0415887 + 0.127997i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.31175 −0.669044 −0.334522 0.942388i \(-0.608575\pi\)
−0.334522 + 0.942388i \(0.608575\pi\)
\(90\) 0 0
\(91\) 2.91429 + 8.96925i 0.305500 + 0.940233i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.233701 0.719257i 0.0239772 0.0737942i
\(96\) 0 0
\(97\) −5.66755 + 4.11771i −0.575452 + 0.418090i −0.837082 0.547078i \(-0.815740\pi\)
0.261630 + 0.965168i \(0.415740\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.25495 2.36486i 0.323880 0.235312i −0.413950 0.910300i \(-0.635851\pi\)
0.737829 + 0.674988i \(0.235851\pi\)
\(102\) 0 0
\(103\) 4.65523 14.3273i 0.458694 1.41171i −0.408050 0.912960i \(-0.633791\pi\)
0.866744 0.498754i \(-0.166209\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.160353 + 0.493515i 0.0155019 + 0.0477099i 0.958508 0.285065i \(-0.0920151\pi\)
−0.943006 + 0.332775i \(0.892015\pi\)
\(108\) 0 0
\(109\) −0.285032 −0.0273011 −0.0136506 0.999907i \(-0.504345\pi\)
−0.0136506 + 0.999907i \(0.504345\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.57504 + 11.0028i 0.336311 + 1.03506i 0.966072 + 0.258271i \(0.0831528\pi\)
−0.629761 + 0.776789i \(0.716847\pi\)
\(114\) 0 0
\(115\) −0.0935520 0.0679695i −0.00872377 0.00633819i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −21.4604 + 15.5919i −1.96727 + 1.42930i
\(120\) 0 0
\(121\) −10.2673 3.94749i −0.933390 0.358862i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.504704 + 1.55332i −0.0451421 + 0.138933i
\(126\) 0 0
\(127\) 13.8495 + 10.0623i 1.22895 + 0.892883i 0.996811 0.0797996i \(-0.0254280\pi\)
0.232138 + 0.972683i \(0.425428\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.02344 −0.438900 −0.219450 0.975624i \(-0.570426\pi\)
−0.219450 + 0.975624i \(0.570426\pi\)
\(132\) 0 0
\(133\) 16.1679 1.40194
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.43148 + 1.76657i 0.207735 + 0.150928i 0.686788 0.726857i \(-0.259020\pi\)
−0.479053 + 0.877786i \(0.659020\pi\)
\(138\) 0 0
\(139\) −1.65652 + 5.09825i −0.140504 + 0.432428i −0.996406 0.0847114i \(-0.973003\pi\)
0.855901 + 0.517140i \(0.173003\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.84407 + 8.06477i 0.321458 + 0.674410i
\(144\) 0 0
\(145\) −0.136319 + 0.0990413i −0.0113207 + 0.00822493i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.70922 + 3.42145i 0.385794 + 0.280296i 0.763730 0.645536i \(-0.223366\pi\)
−0.377936 + 0.925832i \(0.623366\pi\)
\(150\) 0 0
\(151\) 1.12657 + 3.46722i 0.0916788 + 0.282158i 0.986374 0.164519i \(-0.0526072\pi\)
−0.894695 + 0.446677i \(0.852607\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.884303 0.0710289
\(156\) 0 0
\(157\) 0.0448569 + 0.138055i 0.00357997 + 0.0110180i 0.952831 0.303503i \(-0.0981562\pi\)
−0.949251 + 0.314521i \(0.898156\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.763932 2.35114i 0.0602063 0.185296i
\(162\) 0 0
\(163\) 11.6809 8.48668i 0.914919 0.664728i −0.0273349 0.999626i \(-0.508702\pi\)
0.942254 + 0.334899i \(0.108702\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.1091 10.2508i 1.09179 0.793233i 0.112090 0.993698i \(-0.464245\pi\)
0.979701 + 0.200465i \(0.0642454\pi\)
\(168\) 0 0
\(169\) −1.77496 + 5.46275i −0.136535 + 0.420212i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.63736 + 17.3500i 0.428601 + 1.31910i 0.899504 + 0.436913i \(0.143928\pi\)
−0.470903 + 0.882185i \(0.656072\pi\)
\(174\) 0 0
\(175\) −17.4113 −1.31617
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.82688 + 8.70025i 0.211291 + 0.650288i 0.999396 + 0.0347466i \(0.0110624\pi\)
−0.788105 + 0.615541i \(0.788938\pi\)
\(180\) 0 0
\(181\) 13.4621 + 9.78079i 1.00063 + 0.727001i 0.962223 0.272261i \(-0.0877716\pi\)
0.0384073 + 0.999262i \(0.487772\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.53615 + 1.11608i −0.112940 + 0.0820558i
\(186\) 0 0
\(187\) −18.2326 + 17.2930i −1.33330 + 1.26459i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.37239 7.30146i 0.171660 0.528315i −0.827805 0.561015i \(-0.810411\pi\)
0.999465 + 0.0327007i \(0.0104108\pi\)
\(192\) 0 0
\(193\) −15.9130 11.5615i −1.14544 0.832213i −0.157574 0.987507i \(-0.550367\pi\)
−0.987868 + 0.155294i \(0.950367\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −22.7460 −1.62059 −0.810294 0.586024i \(-0.800692\pi\)
−0.810294 + 0.586024i \(0.800692\pi\)
\(198\) 0 0
\(199\) 6.85748 0.486114 0.243057 0.970012i \(-0.421850\pi\)
0.243057 + 0.970012i \(0.421850\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.91429 2.11735i −0.204543 0.148609i
\(204\) 0 0
\(205\) 0.0142079 0.0437273i 0.000992320 0.00305405i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15.1858 1.99516i 1.05042 0.138008i
\(210\) 0 0
\(211\) 9.30563 6.76094i 0.640626 0.465442i −0.219439 0.975626i \(-0.570423\pi\)
0.860065 + 0.510184i \(0.170423\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.571258 0.415043i −0.0389595 0.0283057i
\(216\) 0 0
\(217\) 5.84198 + 17.9798i 0.396580 + 1.22055i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 20.4096 1.37290
\(222\) 0 0
\(223\) 5.02745 + 15.4729i 0.336663 + 1.03614i 0.965897 + 0.258926i \(0.0833685\pi\)
−0.629235 + 0.777215i \(0.716632\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.91835 + 5.90406i −0.127325 + 0.391866i −0.994318 0.106455i \(-0.966050\pi\)
0.866992 + 0.498321i \(0.166050\pi\)
\(228\) 0 0
\(229\) 16.6982 12.1319i 1.10345 0.801701i 0.121827 0.992551i \(-0.461125\pi\)
0.981619 + 0.190850i \(0.0611246\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.31111 + 6.03837i −0.544479 + 0.395587i −0.825746 0.564043i \(-0.809245\pi\)
0.281267 + 0.959630i \(0.409245\pi\)
\(234\) 0 0
\(235\) −0.294962 + 0.907799i −0.0192412 + 0.0592182i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.19330 + 19.0610i 0.400611 + 1.23295i 0.924505 + 0.381171i \(0.124479\pi\)
−0.523893 + 0.851784i \(0.675521\pi\)
\(240\) 0 0
\(241\) −6.87625 −0.442938 −0.221469 0.975167i \(-0.571085\pi\)
−0.221469 + 0.975167i \(0.571085\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.266052 + 0.818825i 0.0169975 + 0.0523128i
\(246\) 0 0
\(247\) −10.0639 7.31186i −0.640352 0.465243i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.20817 3.05742i 0.265618 0.192982i −0.447002 0.894533i \(-0.647508\pi\)
0.712620 + 0.701550i \(0.247508\pi\)
\(252\) 0 0
\(253\) 0.427390 2.30259i 0.0268698 0.144762i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.74683 + 17.6869i −0.358478 + 1.10328i 0.595488 + 0.803364i \(0.296959\pi\)
−0.953965 + 0.299916i \(0.903041\pi\)
\(258\) 0 0
\(259\) −32.8406 23.8601i −2.04062 1.48259i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.27857 −0.0788397 −0.0394199 0.999223i \(-0.512551\pi\)
−0.0394199 + 0.999223i \(0.512551\pi\)
\(264\) 0 0
\(265\) −1.61668 −0.0993120
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.17926 + 1.58333i 0.132872 + 0.0965372i 0.652236 0.758016i \(-0.273831\pi\)
−0.519364 + 0.854553i \(0.673831\pi\)
\(270\) 0 0
\(271\) −3.20991 + 9.87910i −0.194988 + 0.600112i 0.804988 + 0.593291i \(0.202171\pi\)
−0.999977 + 0.00682189i \(0.997829\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.3536 + 2.14859i −0.986161 + 0.129565i
\(276\) 0 0
\(277\) 5.91429 4.29698i 0.355355 0.258181i −0.395757 0.918355i \(-0.629518\pi\)
0.751112 + 0.660175i \(0.229518\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −13.5472 9.84260i −0.808157 0.587160i 0.105139 0.994458i \(-0.466471\pi\)
−0.913296 + 0.407297i \(0.866471\pi\)
\(282\) 0 0
\(283\) −6.32816 19.4761i −0.376170 1.15773i −0.942686 0.333681i \(-0.891709\pi\)
0.566516 0.824051i \(-0.308291\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.982932 0.0580206
\(288\) 0 0
\(289\) 12.4864 + 38.4292i 0.734494 + 2.26054i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.76665 17.7479i 0.336891 1.03684i −0.628892 0.777493i \(-0.716491\pi\)
0.965783 0.259352i \(-0.0835089\pi\)
\(294\) 0 0
\(295\) −0.409412 + 0.297455i −0.0238369 + 0.0173185i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.53881 + 1.11801i −0.0889916 + 0.0646562i
\(300\) 0 0
\(301\) 4.66481 14.3568i 0.268875 0.827513i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.350795 + 1.07964i 0.0200865 + 0.0618199i
\(306\) 0 0
\(307\) −16.2802 −0.929160 −0.464580 0.885531i \(-0.653795\pi\)
−0.464580 + 0.885531i \(0.653795\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.22987 9.94052i −0.183149 0.563675i 0.816762 0.576974i \(-0.195767\pi\)
−0.999912 + 0.0132990i \(0.995767\pi\)
\(312\) 0 0
\(313\) −6.81457 4.95107i −0.385182 0.279851i 0.378296 0.925685i \(-0.376510\pi\)
−0.763478 + 0.645833i \(0.776510\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.3685 12.6189i 0.975510 0.708749i 0.0188092 0.999823i \(-0.494012\pi\)
0.956701 + 0.291074i \(0.0940125\pi\)
\(318\) 0 0
\(319\) −2.99854 1.62910i −0.167886 0.0912121i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.8124 33.2771i 0.601617 1.85159i
\(324\) 0 0
\(325\) 10.8379 + 7.87418i 0.601177 + 0.436781i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −20.4061 −1.12502
\(330\) 0 0
\(331\) 21.5452 1.18423 0.592117 0.805852i \(-0.298292\pi\)
0.592117 + 0.805852i \(0.298292\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.253935 0.184494i −0.0138739 0.0100800i
\(336\) 0 0
\(337\) 3.46278 10.6574i 0.188630 0.580543i −0.811362 0.584544i \(-0.801273\pi\)
0.999992 + 0.00400074i \(0.00127348\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.70584 + 16.1666i 0.417294 + 0.875473i
\(342\) 0 0
\(343\) 4.93598 3.58620i 0.266518 0.193637i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.1421 + 7.36867i 0.544456 + 0.395571i 0.825737 0.564055i \(-0.190759\pi\)
−0.281281 + 0.959625i \(0.590759\pi\)
\(348\) 0 0
\(349\) 4.96963 + 15.2949i 0.266018 + 0.818719i 0.991457 + 0.130433i \(0.0416368\pi\)
−0.725439 + 0.688286i \(0.758363\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.9450 0.901892 0.450946 0.892551i \(-0.351087\pi\)
0.450946 + 0.892551i \(0.351087\pi\)
\(354\) 0 0
\(355\) −0.615773 1.89515i −0.0326818 0.100584i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.62469 23.4664i 0.402416 1.23851i −0.520618 0.853789i \(-0.674299\pi\)
0.923034 0.384718i \(-0.125701\pi\)
\(360\) 0 0
\(361\) −1.88197 + 1.36733i −0.0990508 + 0.0719646i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.50724 1.09508i 0.0788927 0.0573189i
\(366\) 0 0
\(367\) 9.56377 29.4343i 0.499225 1.53646i −0.311043 0.950396i \(-0.600678\pi\)
0.810268 0.586060i \(-0.199322\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.6803 32.8706i −0.554494 1.70656i
\(372\) 0 0
\(373\) −16.6908 −0.864217 −0.432108 0.901822i \(-0.642230\pi\)
−0.432108 + 0.901822i \(0.642230\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.856469 + 2.63594i 0.0441104 + 0.135758i
\(378\) 0 0
\(379\) 13.4370 + 9.76252i 0.690210 + 0.501467i 0.876729 0.480985i \(-0.159721\pi\)
−0.186519 + 0.982451i \(0.559721\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.20817 1.60433i 0.112832 0.0819775i −0.529938 0.848036i \(-0.677785\pi\)
0.642771 + 0.766059i \(0.277785\pi\)
\(384\) 0 0
\(385\) 0.818197 + 1.71656i 0.0416992 + 0.0874838i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.71908 14.5238i 0.239267 0.736387i −0.757260 0.653113i \(-0.773462\pi\)
0.996527 0.0832735i \(-0.0265375\pi\)
\(390\) 0 0
\(391\) −4.32827 3.14467i −0.218890 0.159033i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.282881 −0.0142333
\(396\) 0 0
\(397\) 21.4810 1.07810 0.539050 0.842274i \(-0.318783\pi\)
0.539050 + 0.842274i \(0.318783\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −28.9448 21.0296i −1.44544 1.05017i −0.986871 0.161509i \(-0.948364\pi\)
−0.458564 0.888661i \(-0.651636\pi\)
\(402\) 0 0
\(403\) 4.49485 13.8337i 0.223904 0.689107i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −33.7900 18.3581i −1.67491 0.909975i
\(408\) 0 0
\(409\) −8.54327 + 6.20705i −0.422437 + 0.306919i −0.778618 0.627499i \(-0.784079\pi\)
0.356180 + 0.934417i \(0.384079\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.75261 6.35915i −0.430688 0.312913i
\(414\) 0 0
\(415\) −0.238329 0.733502i −0.0116991 0.0360062i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −29.9952 −1.46536 −0.732680 0.680573i \(-0.761731\pi\)
−0.732680 + 0.680573i \(0.761731\pi\)
\(420\) 0 0
\(421\) −6.55267 20.1670i −0.319357 0.982881i −0.973924 0.226876i \(-0.927149\pi\)
0.654566 0.756005i \(-0.272851\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11.6439 + 35.8362i −0.564812 + 1.73831i
\(426\) 0 0
\(427\) −19.6339 + 14.2649i −0.950150 + 0.690325i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.8875 + 7.91021i −0.524431 + 0.381021i −0.818270 0.574833i \(-0.805067\pi\)
0.293840 + 0.955855i \(0.405067\pi\)
\(432\) 0 0
\(433\) 9.24458 28.4519i 0.444266 1.36731i −0.439020 0.898477i \(-0.644674\pi\)
0.883286 0.468834i \(-0.155326\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.00766 + 3.10126i 0.0482029 + 0.148353i
\(438\) 0 0
\(439\) −33.1644 −1.58285 −0.791425 0.611266i \(-0.790661\pi\)
−0.791425 + 0.611266i \(0.790661\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.59675 + 26.4581i 0.408444 + 1.25706i 0.917985 + 0.396615i \(0.129815\pi\)
−0.509541 + 0.860447i \(0.670185\pi\)
\(444\) 0 0
\(445\) 0.836235 + 0.607560i 0.0396413 + 0.0288011i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.90249 + 4.28841i −0.278556 + 0.202383i −0.718287 0.695747i \(-0.755074\pi\)
0.439731 + 0.898129i \(0.355074\pi\)
\(450\) 0 0
\(451\) 0.923221 0.121296i 0.0434728 0.00571159i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.477258 1.46885i 0.0223742 0.0688607i
\(456\) 0 0
\(457\) 13.0495 + 9.48103i 0.610430 + 0.443504i 0.849566 0.527483i \(-0.176864\pi\)
−0.239135 + 0.970986i \(0.576864\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.4253 0.671851 0.335926 0.941888i \(-0.390951\pi\)
0.335926 + 0.941888i \(0.390951\pi\)
\(462\) 0 0
\(463\) −19.7906 −0.919748 −0.459874 0.887984i \(-0.652105\pi\)
−0.459874 + 0.887984i \(0.652105\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.5957 + 22.2291i 1.41580 + 1.02864i 0.992447 + 0.122673i \(0.0391465\pi\)
0.423352 + 0.905965i \(0.360853\pi\)
\(468\) 0 0
\(469\) 2.07359 6.38187i 0.0957497 0.294687i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.60978 14.0603i 0.119998 0.646494i
\(474\) 0 0
\(475\) 18.5801 13.4993i 0.852515 0.619389i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −31.0120 22.5316i −1.41698 1.02949i −0.992262 0.124165i \(-0.960375\pi\)
−0.424714 0.905328i \(-0.639625\pi\)
\(480\) 0 0
\(481\) 9.65140 + 29.7040i 0.440066 + 1.35438i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.14725 0.0520940
\(486\) 0 0
\(487\) −3.54083 10.8975i −0.160450 0.493815i 0.838222 0.545329i \(-0.183595\pi\)
−0.998672 + 0.0515142i \(0.983595\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.56701 + 23.2889i −0.341494 + 1.05101i 0.621939 + 0.783065i \(0.286345\pi\)
−0.963434 + 0.267946i \(0.913655\pi\)
\(492\) 0 0
\(493\) −6.30691 + 4.58224i −0.284049 + 0.206374i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 34.4645 25.0400i 1.54595 1.12320i
\(498\) 0 0
\(499\) 4.69978 14.4644i 0.210391 0.647516i −0.789058 0.614319i \(-0.789431\pi\)
0.999449 0.0331977i \(-0.0105691\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.23196 25.3354i −0.367045 1.12965i −0.948691 0.316206i \(-0.897591\pi\)
0.581646 0.813442i \(-0.302409\pi\)
\(504\) 0 0
\(505\) −0.658882 −0.0293198
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.72544 14.5434i −0.209452 0.644626i −0.999501 0.0315827i \(-0.989945\pi\)
0.790050 0.613043i \(-0.210055\pi\)
\(510\) 0 0
\(511\) 32.2226 + 23.4111i 1.42544 + 1.03564i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.99589 + 1.45010i −0.0879496 + 0.0638991i
\(516\) 0 0
\(517\) −19.1665 + 2.51815i −0.842941 + 0.110748i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.7044 32.9446i 0.468967 1.44333i −0.384958 0.922934i \(-0.625784\pi\)
0.853925 0.520397i \(-0.174216\pi\)
\(522\) 0 0
\(523\) 13.5192 + 9.82230i 0.591155 + 0.429499i 0.842728 0.538339i \(-0.180948\pi\)
−0.251574 + 0.967838i \(0.580948\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 40.9131 1.78220
\(528\) 0 0
\(529\) −22.5014 −0.978322
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.611837 0.444525i −0.0265016 0.0192545i
\(534\) 0 0
\(535\) 0.0262601 0.0808204i 0.00113532 0.00349417i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.6512 + 11.9992i −0.544926 + 0.516841i
\(540\) 0 0
\(541\) 10.4552 7.59614i 0.449504 0.326583i −0.339896 0.940463i \(-0.610392\pi\)
0.789400 + 0.613880i \(0.210392\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.0377635 + 0.0274368i 0.00161761 + 0.00117526i
\(546\) 0 0
\(547\) 1.61370 + 4.96645i 0.0689968 + 0.212350i 0.979610 0.200910i \(-0.0643899\pi\)
−0.910613 + 0.413260i \(0.864390\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.75154 0.202422
\(552\) 0 0
\(553\) −1.86880 5.75159i −0.0794696 0.244582i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.64711 11.2247i 0.154533 0.475604i −0.843580 0.537003i \(-0.819556\pi\)
0.998113 + 0.0613991i \(0.0195562\pi\)
\(558\) 0 0
\(559\) −9.39645 + 6.82692i −0.397428 + 0.288748i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 29.8190 21.6648i 1.25672 0.913061i 0.258128 0.966111i \(-0.416894\pi\)
0.998592 + 0.0530501i \(0.0168943\pi\)
\(564\) 0 0
\(565\) 0.585466 1.80188i 0.0246307 0.0758056i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.33266 + 25.6453i 0.349323 + 1.07511i 0.959228 + 0.282632i \(0.0912076\pi\)
−0.609905 + 0.792475i \(0.708792\pi\)
\(570\) 0 0
\(571\) −14.3565 −0.600801 −0.300400 0.953813i \(-0.597120\pi\)
−0.300400 + 0.953813i \(0.597120\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.08515 3.33976i −0.0452540 0.139278i
\(576\) 0 0
\(577\) −8.57084 6.22708i −0.356809 0.259237i 0.394911 0.918719i \(-0.370775\pi\)
−0.751720 + 0.659483i \(0.770775\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.3392 9.69150i 0.553403 0.402071i
\(582\) 0 0
\(583\) −14.0878 29.5558i −0.583457 1.22408i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.17859 + 19.0157i −0.255018 + 0.784864i 0.738809 + 0.673915i \(0.235389\pi\)
−0.993826 + 0.110948i \(0.964611\pi\)
\(588\) 0 0
\(589\) −20.1741 14.6574i −0.831261 0.603947i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.8414 −0.527334 −0.263667 0.964614i \(-0.584932\pi\)
−0.263667 + 0.964614i \(0.584932\pi\)
\(594\) 0 0
\(595\) 4.34410 0.178091
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.8097 + 10.7599i 0.605108 + 0.439636i 0.847688 0.530495i \(-0.177994\pi\)
−0.242581 + 0.970131i \(0.577994\pi\)
\(600\) 0 0
\(601\) 4.98290 15.3358i 0.203257 0.625560i −0.796524 0.604607i \(-0.793330\pi\)
0.999780 0.0209527i \(-0.00666995\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.980320 + 1.51131i 0.0398557 + 0.0614436i
\(606\) 0 0
\(607\) 8.08900 5.87700i 0.328322 0.238540i −0.411396 0.911457i \(-0.634959\pi\)
0.739718 + 0.672917i \(0.234959\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.7020 + 9.22855i 0.513868 + 0.373347i
\(612\) 0 0
\(613\) 12.3469 + 37.9997i 0.498685 + 1.53479i 0.811134 + 0.584860i \(0.198851\pi\)
−0.312449 + 0.949934i \(0.601149\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28.5485 1.14932 0.574660 0.818392i \(-0.305134\pi\)
0.574660 + 0.818392i \(0.305134\pi\)
\(618\) 0 0
\(619\) 4.02429 + 12.3855i 0.161750 + 0.497815i 0.998782 0.0493385i \(-0.0157113\pi\)
−0.837032 + 0.547154i \(0.815711\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.82857 + 21.0162i −0.273581 + 0.841996i
\(624\) 0 0
\(625\) −19.9006 + 14.4586i −0.796022 + 0.578344i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −71.0714 + 51.6364i −2.83380 + 2.05888i
\(630\) 0 0
\(631\) −6.00401 + 18.4784i −0.239016 + 0.735615i 0.757547 + 0.652780i \(0.226397\pi\)
−0.996563 + 0.0828350i \(0.973603\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.866325 2.66628i −0.0343791 0.105808i
\(636\) 0 0
\(637\) 14.1617 0.561108
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.50108 + 13.8529i 0.177782 + 0.547156i 0.999750 0.0223779i \(-0.00712370\pi\)
−0.821968 + 0.569534i \(0.807124\pi\)
\(642\) 0 0
\(643\) 2.92158 + 2.12265i 0.115216 + 0.0837092i 0.643901 0.765109i \(-0.277315\pi\)
−0.528685 + 0.848818i \(0.677315\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.38652 + 3.91354i −0.211766 + 0.153857i −0.688612 0.725130i \(-0.741780\pi\)
0.476846 + 0.878987i \(0.341780\pi\)
\(648\) 0 0
\(649\) −9.00564 4.89275i −0.353502 0.192057i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.814815 + 2.50774i −0.0318862 + 0.0981356i −0.965733 0.259538i \(-0.916430\pi\)
0.933847 + 0.357673i \(0.116430\pi\)
\(654\) 0 0
\(655\) 0.665548 + 0.483549i 0.0260051 + 0.0188938i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.2059 −0.709200 −0.354600 0.935018i \(-0.615383\pi\)
−0.354600 + 0.935018i \(0.615383\pi\)
\(660\) 0 0
\(661\) 37.6750 1.46539 0.732693 0.680559i \(-0.238263\pi\)
0.732693 + 0.680559i \(0.238263\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.14207 1.55630i −0.0830658 0.0603509i
\(666\) 0 0
\(667\) 0.224509 0.690968i 0.00869303 0.0267544i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −16.6809 + 15.8212i −0.643958 + 0.610769i
\(672\) 0 0
\(673\) −13.9996 + 10.1713i −0.539644 + 0.392074i −0.823953 0.566658i \(-0.808236\pi\)
0.284309 + 0.958733i \(0.408236\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.77933 + 5.65202i 0.298984 + 0.217225i 0.727155 0.686473i \(-0.240842\pi\)
−0.428171 + 0.903698i \(0.640842\pi\)
\(678\) 0 0
\(679\) 7.57910 + 23.3261i 0.290859 + 0.895172i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33.2554 1.27248 0.636241 0.771491i \(-0.280489\pi\)
0.636241 + 0.771491i \(0.280489\pi\)
\(684\) 0 0
\(685\) −0.152095 0.468101i −0.00581126 0.0178852i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8.21748 + 25.2908i −0.313061 + 0.963502i
\(690\) 0 0
\(691\) −13.7945 + 10.0223i −0.524768 + 0.381266i −0.818397 0.574653i \(-0.805137\pi\)
0.293629 + 0.955919i \(0.405137\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.710221 0.516006i 0.0269402 0.0195732i
\(696\) 0 0
\(697\) 0.657340 2.02308i 0.0248985 0.0766297i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11.3166 + 34.8289i 0.427422 + 1.31547i 0.900656 + 0.434533i \(0.143087\pi\)
−0.473234 + 0.880937i \(0.656913\pi\)
\(702\) 0 0
\(703\) 53.5442 2.01946
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.35278 13.3965i −0.163703 0.503826i
\(708\) 0 0
\(709\) −15.8194 11.4935i −0.594112 0.431647i 0.249672 0.968330i \(-0.419677\pi\)
−0.843784 + 0.536683i \(0.819677\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.08470 + 2.24116i −0.115523 + 0.0839323i
\(714\) 0 0
\(715\) 0.267007 1.43851i 0.00998549 0.0537974i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.09209 + 3.36110i −0.0407280 + 0.125348i −0.969353 0.245671i \(-0.920992\pi\)
0.928625 + 0.371019i \(0.120992\pi\)
\(720\) 0 0
\(721\) −42.6692 31.0010i −1.58908 1.15454i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.11695 −0.190039
\(726\) 0 0
\(727\) 5.02836 0.186491 0.0932457 0.995643i \(-0.470276\pi\)
0.0932457 + 0.995643i \(0.470276\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −26.4298 19.2024i −0.977540 0.710225i
\(732\) 0 0
\(733\) −3.52505 + 10.8490i −0.130201 + 0.400716i −0.994813 0.101724i \(-0.967564\pi\)
0.864612 + 0.502440i \(0.167564\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.16009 6.25007i 0.0427326 0.230224i
\(738\) 0 0
\(739\) −3.65966 + 2.65890i −0.134623 + 0.0978091i −0.653059 0.757307i \(-0.726514\pi\)
0.518436 + 0.855116i \(0.326514\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.5365 + 14.1941i 0.716725 + 0.520731i 0.885336 0.464952i \(-0.153928\pi\)
−0.168611 + 0.985683i \(0.553928\pi\)
\(744\) 0 0
\(745\) −0.294574 0.906605i −0.0107924 0.0332155i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.81673 0.0663820
\(750\) 0 0
\(751\) 4.56162 + 14.0392i 0.166456 + 0.512298i 0.999141 0.0414489i \(-0.0131974\pi\)
−0.832685 + 0.553747i \(0.813197\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.184492 0.567809i 0.00671436 0.0206647i
\(756\) 0 0
\(757\) −10.2060 + 7.41508i −0.370943 + 0.269506i −0.757602 0.652717i \(-0.773629\pi\)
0.386659 + 0.922223i \(0.373629\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.0141 + 14.5411i −0.725509 + 0.527113i −0.888140 0.459574i \(-0.848002\pi\)
0.162630 + 0.986687i \(0.448002\pi\)
\(762\) 0 0
\(763\) −0.308371 + 0.949069i −0.0111638 + 0.0343586i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.57227 + 7.91664i 0.0928794 + 0.285853i
\(768\) 0 0
\(769\) −5.37741 −0.193914 −0.0969571 0.995289i \(-0.530911\pi\)
−0.0969571 + 0.995289i \(0.530911\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.02699 15.4715i −0.180808 0.556471i 0.819043 0.573733i \(-0.194505\pi\)
−0.999851 + 0.0172619i \(0.994505\pi\)
\(774\) 0 0
\(775\) 21.7256 + 15.7846i 0.780407 + 0.566999i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.04892 + 0.762081i −0.0375813 + 0.0273044i
\(780\) 0 0
\(781\) 29.2809 27.7718i 1.04775 0.993754i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.00734599 0.0226086i 0.000262190 0.000806937i
\(786\) 0 0
\(787\) 15.0196 + 10.9124i 0.535392 + 0.388985i 0.822371 0.568952i \(-0.192651\pi\)
−0.286979 + 0.957937i \(0.592651\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 40.5038 1.44015
\(792\) 0 0
\(793\) 18.6725 0.663081
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.0278 18.9103i −0.921952 0.669837i 0.0220572 0.999757i \(-0.492978\pi\)
−0.944009 + 0.329919i \(0.892978\pi\)
\(798\) 0 0
\(799\) −13.6467 + 42.0001i −0.482784 + 1.48586i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 33.1541 + 18.0126i 1.16998 + 0.635650i
\(804\) 0 0
\(805\) −0.327530 + 0.237964i −0.0115439 + 0.00838714i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.4124 17.0101i −0.823138 0.598045i 0.0944717 0.995528i \(-0.469884\pi\)
−0.917610 + 0.397483i \(0.869884\pi\)
\(810\) 0 0
\(811\) 3.10198 + 9.54691i 0.108925 + 0.335237i 0.990632 0.136561i \(-0.0436050\pi\)
−0.881706 + 0.471799i \(0.843605\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.36450 −0.0828249
\(816\) 0 0
\(817\) 6.15309 + 18.9373i 0.215269 + 0.662531i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9.27874 28.5570i 0.323830 0.996647i −0.648136 0.761525i \(-0.724451\pi\)
0.971966 0.235122i \(-0.0755489\pi\)
\(822\) 0 0
\(823\) 24.7215 17.9612i 0.861738 0.626089i −0.0666193 0.997778i \(-0.521221\pi\)
0.928357 + 0.371689i \(0.121221\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.75466 + 3.45446i −0.165336 + 0.120123i −0.667376 0.744721i \(-0.732583\pi\)
0.502041 + 0.864844i \(0.332583\pi\)
\(828\) 0 0
\(829\) −3.23670 + 9.96152i −0.112415 + 0.345978i −0.991399 0.130873i \(-0.958222\pi\)
0.878984 + 0.476851i \(0.158222\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12.3092 + 37.8837i 0.426487 + 1.31259i
\(834\) 0 0
\(835\) −2.85602 −0.0988366
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.3026 + 31.7082i 0.355686 + 1.09469i 0.955610 + 0.294633i \(0.0951974\pi\)
−0.599924 + 0.800057i \(0.704803\pi\)
\(840\) 0 0
\(841\) 22.6050 + 16.4235i 0.779484 + 0.566328i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.760998 0.552897i 0.0261791 0.0190203i
\(846\) 0 0
\(847\) −24.2519 + 29.9162i −0.833306 + 1.02793i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.52995 7.78640i 0.0867257 0.266914i
\(852\) 0 0
\(853\) 22.4071 + 16.2797i 0.767205 + 0.557407i 0.901112 0.433587i \(-0.142752\pi\)
−0.133907 + 0.990994i \(0.542752\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.13818 0.0730387 0.0365194 0.999333i \(-0.488373\pi\)
0.0365194 + 0.999333i \(0.488373\pi\)
\(858\) 0 0
\(859\) −6.06982 −0.207099 −0.103550 0.994624i \(-0.533020\pi\)
−0.103550 + 0.994624i \(0.533020\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.1070 + 17.5148i 0.820613 + 0.596210i 0.916888 0.399145i \(-0.130693\pi\)
−0.0962753 + 0.995355i \(0.530693\pi\)
\(864\) 0 0
\(865\) 0.923202 2.84132i 0.0313898 0.0966079i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.46503 5.17158i −0.0836206 0.175434i
\(870\) 0 0
\(871\) −4.17690 + 3.03469i −0.141529 + 0.102827i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.62604 + 3.36102i 0.156389 + 0.113623i
\(876\) 0 0
\(877\) −11.4515 35.2440i −0.386688 1.19010i −0.935248 0.353993i \(-0.884824\pi\)
0.548560 0.836111i \(-0.315176\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.6956 0.360345 0.180172 0.983635i \(-0.442334\pi\)
0.180172 + 0.983635i \(0.442334\pi\)
\(882\) 0 0
\(883\) −4.97395 15.3082i −0.167387 0.515163i 0.831818 0.555049i \(-0.187301\pi\)
−0.999204 + 0.0398858i \(0.987301\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.12229 + 24.9978i −0.272720 + 0.839345i 0.717094 + 0.696977i \(0.245472\pi\)
−0.989814 + 0.142369i \(0.954528\pi\)
\(888\) 0 0
\(889\) 48.4879 35.2285i 1.62623 1.18153i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 21.7760 15.8212i 0.728704 0.529435i
\(894\) 0 0
\(895\) 0.462944 1.42480i 0.0154745 0.0476257i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.71688 + 5.28401i 0.0572611 + 0.176232i
\(900\) 0 0
\(901\) −74.7972 −2.49186
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.842090 2.59169i −0.0279920 0.0861506i
\(906\) 0 0
\(907\) 5.33332 + 3.87489i 0.177090 + 0.128663i 0.672799 0.739825i \(-0.265092\pi\)
−0.495709 + 0.868489i \(0.665092\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −35.7326 + 25.9613i −1.18387 + 0.860135i −0.992603 0.121402i \(-0.961261\pi\)
−0.191271 + 0.981537i \(0.561261\pi\)
\(912\) 0 0
\(913\) 11.3329 10.7488i 0.375065 0.355735i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.43477 + 16.7265i −0.179472 + 0.552358i
\(918\) 0 0
\(919\) −25.4641 18.5008i −0.839983 0.610284i 0.0823828 0.996601i \(-0.473747\pi\)
−0.922366 + 0.386317i \(0.873747\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −32.7770 −1.07887
\(924\) 0 0
\(925\) −57.6620 −1.89592
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −26.2675 19.0845i −0.861810 0.626142i 0.0665666 0.997782i \(-0.478796\pi\)
−0.928377 + 0.371640i \(0.878796\pi\)
\(930\) 0 0
\(931\) 7.50246 23.0902i 0.245883 0.756751i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.08021 0.536071i 0.133437 0.0175314i
\(936\) 0 0
\(937\) 23.4691 17.0513i 0.766701 0.557041i −0.134257 0.990947i \(-0.542865\pi\)
0.900958 + 0.433905i \(0.142865\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.76511 + 3.46205i 0.155338 + 0.112860i 0.662739 0.748850i \(-0.269394\pi\)
−0.507401 + 0.861710i \(0.669394\pi\)
\(942\) 0 0
\(943\) 0.0612608 + 0.188541i 0.00199493 + 0.00613975i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −52.2319 −1.69731 −0.848655 0.528947i \(-0.822587\pi\)
−0.848655 + 0.528947i \(0.822587\pi\)
\(948\) 0 0
\(949\) −9.46977 29.1450i −0.307402 0.946085i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.8723 36.5391i 0.384581 1.18362i −0.552203 0.833710i \(-0.686213\pi\)
0.936784 0.349909i \(-0.113787\pi\)
\(954\) 0 0
\(955\) −1.01714 + 0.738997i −0.0329139 + 0.0239134i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.51271 6.18485i 0.274890 0.199719i
\(960\) 0 0
\(961\) −0.569149 + 1.75166i −0.0183596 + 0.0565052i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.995400 + 3.06352i 0.0320430 + 0.0986183i
\(966\) 0 0
\(967\) 50.8436 1.63502 0.817509 0.575915i \(-0.195354\pi\)
0.817509 + 0.575915i \(0.195354\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.44121 + 7.51327i 0.0783422 + 0.241112i 0.982556 0.185968i \(-0.0595421\pi\)
−0.904214 + 0.427080i \(0.859542\pi\)
\(972\) 0 0
\(973\) 15.1834 + 11.0314i 0.486759 + 0.353651i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12.9596 + 9.41571i −0.414615 + 0.301235i −0.775467 0.631388i \(-0.782486\pi\)
0.360853 + 0.932623i \(0.382486\pi\)
\(978\) 0 0
\(979\) −3.82032 + 20.5822i −0.122098 + 0.657809i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.0716 55.6186i 0.576394 1.77396i −0.0549895 0.998487i \(-0.517513\pi\)
0.631383 0.775471i \(-0.282487\pi\)
\(984\) 0 0
\(985\) 3.01359 + 2.18950i 0.0960209 + 0.0697633i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.04459 0.0968123
\(990\) 0 0
\(991\) −17.1741 −0.545552 −0.272776 0.962078i \(-0.587942\pi\)
−0.272776 + 0.962078i \(0.587942\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.908538 0.660092i −0.0288026 0.0209263i
\(996\) 0 0
\(997\) −12.8382 + 39.5118i −0.406588 + 1.25135i 0.512973 + 0.858405i \(0.328544\pi\)
−0.919562 + 0.392946i \(0.871456\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.r.g.289.1 8
3.2 odd 2 88.2.i.b.25.1 8
11.2 odd 10 8712.2.a.cd.1.3 4
11.4 even 5 inner 792.2.r.g.433.1 8
11.9 even 5 8712.2.a.ce.1.3 4
12.11 even 2 176.2.m.d.113.2 8
24.5 odd 2 704.2.m.l.641.2 8
24.11 even 2 704.2.m.i.641.1 8
33.2 even 10 968.2.a.m.1.1 4
33.5 odd 10 968.2.i.s.9.2 8
33.8 even 10 968.2.i.t.753.2 8
33.14 odd 10 968.2.i.s.753.2 8
33.17 even 10 968.2.i.t.9.2 8
33.20 odd 10 968.2.a.n.1.1 4
33.26 odd 10 88.2.i.b.81.1 yes 8
33.29 even 10 968.2.i.p.81.1 8
33.32 even 2 968.2.i.p.729.1 8
132.35 odd 10 1936.2.a.bc.1.4 4
132.59 even 10 176.2.m.d.81.2 8
132.119 even 10 1936.2.a.bb.1.4 4
264.35 odd 10 7744.2.a.ds.1.1 4
264.53 odd 10 7744.2.a.di.1.4 4
264.59 even 10 704.2.m.i.257.1 8
264.101 even 10 7744.2.a.dh.1.4 4
264.125 odd 10 704.2.m.l.257.2 8
264.251 even 10 7744.2.a.dr.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.b.25.1 8 3.2 odd 2
88.2.i.b.81.1 yes 8 33.26 odd 10
176.2.m.d.81.2 8 132.59 even 10
176.2.m.d.113.2 8 12.11 even 2
704.2.m.i.257.1 8 264.59 even 10
704.2.m.i.641.1 8 24.11 even 2
704.2.m.l.257.2 8 264.125 odd 10
704.2.m.l.641.2 8 24.5 odd 2
792.2.r.g.289.1 8 1.1 even 1 trivial
792.2.r.g.433.1 8 11.4 even 5 inner
968.2.a.m.1.1 4 33.2 even 10
968.2.a.n.1.1 4 33.20 odd 10
968.2.i.p.81.1 8 33.29 even 10
968.2.i.p.729.1 8 33.32 even 2
968.2.i.s.9.2 8 33.5 odd 10
968.2.i.s.753.2 8 33.14 odd 10
968.2.i.t.9.2 8 33.17 even 10
968.2.i.t.753.2 8 33.8 even 10
1936.2.a.bb.1.4 4 132.119 even 10
1936.2.a.bc.1.4 4 132.35 odd 10
7744.2.a.dh.1.4 4 264.101 even 10
7744.2.a.di.1.4 4 264.53 odd 10
7744.2.a.dr.1.1 4 264.251 even 10
7744.2.a.ds.1.1 4 264.35 odd 10
8712.2.a.cd.1.3 4 11.2 odd 10
8712.2.a.ce.1.3 4 11.9 even 5