Properties

Label 704.2.m.l.257.2
Level $704$
Weight $2$
Character 704.257
Analytic conductor $5.621$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,2,Mod(257,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 257.2
Root \(-0.390899 + 1.20306i\) of defining polynomial
Character \(\chi\) \(=\) 704.257
Dual form 704.2.m.l.641.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.632489 - 1.94660i) q^{3} +(-0.132489 + 0.0962586i) q^{5} +(1.08188 + 3.32969i) q^{7} +(-0.962157 - 0.699048i) q^{9} +(0.605270 + 3.26093i) q^{11} +(2.17926 + 1.58333i) q^{13} +(0.103579 + 0.318785i) q^{15} +(6.12970 - 4.45349i) q^{17} +(-1.42705 + 4.39201i) q^{19} +7.16586 q^{21} -0.706114 q^{23} +(-1.53680 + 4.72978i) q^{25} +(2.99831 - 2.17840i) q^{27} +(0.317950 + 0.978551i) q^{29} +(-4.36856 - 3.17394i) q^{31} +(6.73055 + 0.884280i) q^{33} +(-0.463848 - 0.337006i) q^{35} +(-3.58293 - 11.0271i) q^{37} +(4.46047 - 3.24072i) q^{39} +(-0.0867577 + 0.267013i) q^{41} -4.31175 q^{43} +0.194764 q^{45} +(1.80113 - 5.54330i) q^{47} +(-4.25326 + 3.09017i) q^{49} +(-4.79220 - 14.7489i) q^{51} +(7.98659 + 5.80260i) q^{53} +(-0.394084 - 0.373773i) q^{55} +(7.64689 + 5.55579i) q^{57} +(0.954915 + 2.93893i) q^{59} +(5.60801 - 4.07446i) q^{61} +(1.28667 - 3.95998i) q^{63} -0.441137 q^{65} -1.91665 q^{67} +(-0.446609 + 1.37452i) q^{69} +(-9.84407 + 7.15214i) q^{71} +(-3.51550 - 10.8196i) q^{73} +(8.23497 + 5.98306i) q^{75} +(-10.2031 + 5.54330i) q^{77} +(1.39747 + 1.01532i) q^{79} +(-3.44661 - 10.6076i) q^{81} +(3.81006 - 2.76817i) q^{83} +(-0.383429 + 1.18007i) q^{85} +2.10595 q^{87} +6.31175 q^{89} +(-2.91429 + 8.96925i) q^{91} +(-8.94146 + 6.49635i) q^{93} +(-0.233701 - 0.719257i) q^{95} +(-5.66755 - 4.11771i) q^{97} +(1.69718 - 3.56064i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{3} + 3 q^{5} + 7 q^{7} - 13 q^{9} - 7 q^{11} - 7 q^{13} - 13 q^{15} + q^{17} + 2 q^{19} + 2 q^{21} - 4 q^{23} - 33 q^{25} + 22 q^{27} - 17 q^{29} - 13 q^{31} + 16 q^{33} - 11 q^{35} - q^{37}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.632489 1.94660i 0.365167 1.12387i −0.584709 0.811243i \(-0.698791\pi\)
0.949876 0.312626i \(-0.101209\pi\)
\(4\) 0 0
\(5\) −0.132489 + 0.0962586i −0.0592507 + 0.0430481i −0.617016 0.786950i \(-0.711659\pi\)
0.557766 + 0.829998i \(0.311659\pi\)
\(6\) 0 0
\(7\) 1.08188 + 3.32969i 0.408913 + 1.25851i 0.917583 + 0.397544i \(0.130137\pi\)
−0.508670 + 0.860962i \(0.669863\pi\)
\(8\) 0 0
\(9\) −0.962157 0.699048i −0.320719 0.233016i
\(10\) 0 0
\(11\) 0.605270 + 3.26093i 0.182496 + 0.983207i
\(12\) 0 0
\(13\) 2.17926 + 1.58333i 0.604419 + 0.439136i 0.847445 0.530884i \(-0.178140\pi\)
−0.243025 + 0.970020i \(0.578140\pi\)
\(14\) 0 0
\(15\) 0.103579 + 0.318785i 0.0267441 + 0.0823098i
\(16\) 0 0
\(17\) 6.12970 4.45349i 1.48667 1.08013i 0.511342 0.859378i \(-0.329149\pi\)
0.975330 0.220753i \(-0.0708513\pi\)
\(18\) 0 0
\(19\) −1.42705 + 4.39201i −0.327388 + 1.00760i 0.642963 + 0.765897i \(0.277705\pi\)
−0.970351 + 0.241699i \(0.922295\pi\)
\(20\) 0 0
\(21\) 7.16586 1.56372
\(22\) 0 0
\(23\) −0.706114 −0.147235 −0.0736174 0.997287i \(-0.523454\pi\)
−0.0736174 + 0.997287i \(0.523454\pi\)
\(24\) 0 0
\(25\) −1.53680 + 4.72978i −0.307359 + 0.945955i
\(26\) 0 0
\(27\) 2.99831 2.17840i 0.577025 0.419233i
\(28\) 0 0
\(29\) 0.317950 + 0.978551i 0.0590419 + 0.181712i 0.976228 0.216748i \(-0.0695448\pi\)
−0.917186 + 0.398460i \(0.869545\pi\)
\(30\) 0 0
\(31\) −4.36856 3.17394i −0.784616 0.570057i 0.121745 0.992561i \(-0.461151\pi\)
−0.906361 + 0.422505i \(0.861151\pi\)
\(32\) 0 0
\(33\) 6.73055 + 0.884280i 1.17164 + 0.153933i
\(34\) 0 0
\(35\) −0.463848 0.337006i −0.0784047 0.0569643i
\(36\) 0 0
\(37\) −3.58293 11.0271i −0.589030 1.81285i −0.582447 0.812869i \(-0.697905\pi\)
−0.00658248 0.999978i \(-0.502095\pi\)
\(38\) 0 0
\(39\) 4.46047 3.24072i 0.714246 0.518930i
\(40\) 0 0
\(41\) −0.0867577 + 0.267013i −0.0135493 + 0.0417004i −0.957603 0.288093i \(-0.906979\pi\)
0.944053 + 0.329793i \(0.106979\pi\)
\(42\) 0 0
\(43\) −4.31175 −0.657536 −0.328768 0.944411i \(-0.606633\pi\)
−0.328768 + 0.944411i \(0.606633\pi\)
\(44\) 0 0
\(45\) 0.194764 0.0290337
\(46\) 0 0
\(47\) 1.80113 5.54330i 0.262722 0.808574i −0.729488 0.683994i \(-0.760242\pi\)
0.992210 0.124580i \(-0.0397584\pi\)
\(48\) 0 0
\(49\) −4.25326 + 3.09017i −0.607608 + 0.441453i
\(50\) 0 0
\(51\) −4.79220 14.7489i −0.671042 2.06525i
\(52\) 0 0
\(53\) 7.98659 + 5.80260i 1.09704 + 0.797048i 0.980575 0.196146i \(-0.0628428\pi\)
0.116468 + 0.993194i \(0.462843\pi\)
\(54\) 0 0
\(55\) −0.394084 0.373773i −0.0531382 0.0503996i
\(56\) 0 0
\(57\) 7.64689 + 5.55579i 1.01286 + 0.735883i
\(58\) 0 0
\(59\) 0.954915 + 2.93893i 0.124319 + 0.382616i 0.993776 0.111393i \(-0.0355312\pi\)
−0.869457 + 0.494008i \(0.835531\pi\)
\(60\) 0 0
\(61\) 5.60801 4.07446i 0.718032 0.521681i −0.167723 0.985834i \(-0.553641\pi\)
0.885755 + 0.464154i \(0.153641\pi\)
\(62\) 0 0
\(63\) 1.28667 3.95998i 0.162106 0.498910i
\(64\) 0 0
\(65\) −0.441137 −0.0547163
\(66\) 0 0
\(67\) −1.91665 −0.234157 −0.117078 0.993123i \(-0.537353\pi\)
−0.117078 + 0.993123i \(0.537353\pi\)
\(68\) 0 0
\(69\) −0.446609 + 1.37452i −0.0537654 + 0.165473i
\(70\) 0 0
\(71\) −9.84407 + 7.15214i −1.16828 + 0.848803i −0.990802 0.135323i \(-0.956793\pi\)
−0.177475 + 0.984125i \(0.556793\pi\)
\(72\) 0 0
\(73\) −3.51550 10.8196i −0.411458 1.26634i −0.915381 0.402589i \(-0.868110\pi\)
0.503923 0.863749i \(-0.331890\pi\)
\(74\) 0 0
\(75\) 8.23497 + 5.98306i 0.950893 + 0.690864i
\(76\) 0 0
\(77\) −10.2031 + 5.54330i −1.16275 + 0.631718i
\(78\) 0 0
\(79\) 1.39747 + 1.01532i 0.157227 + 0.114232i 0.663617 0.748072i \(-0.269020\pi\)
−0.506390 + 0.862305i \(0.669020\pi\)
\(80\) 0 0
\(81\) −3.44661 10.6076i −0.382957 1.17862i
\(82\) 0 0
\(83\) 3.81006 2.76817i 0.418209 0.303846i −0.358708 0.933450i \(-0.616783\pi\)
0.776917 + 0.629603i \(0.216783\pi\)
\(84\) 0 0
\(85\) −0.383429 + 1.18007i −0.0415887 + 0.127997i
\(86\) 0 0
\(87\) 2.10595 0.225781
\(88\) 0 0
\(89\) 6.31175 0.669044 0.334522 0.942388i \(-0.391425\pi\)
0.334522 + 0.942388i \(0.391425\pi\)
\(90\) 0 0
\(91\) −2.91429 + 8.96925i −0.305500 + 0.940233i
\(92\) 0 0
\(93\) −8.94146 + 6.49635i −0.927186 + 0.673640i
\(94\) 0 0
\(95\) −0.233701 0.719257i −0.0239772 0.0737942i
\(96\) 0 0
\(97\) −5.66755 4.11771i −0.575452 0.418090i 0.261630 0.965168i \(-0.415740\pi\)
−0.837082 + 0.547078i \(0.815740\pi\)
\(98\) 0 0
\(99\) 1.69718 3.56064i 0.170573 0.357858i
\(100\) 0 0
\(101\) 3.25495 + 2.36486i 0.323880 + 0.235312i 0.737829 0.674988i \(-0.235851\pi\)
−0.413950 + 0.910300i \(0.635851\pi\)
\(102\) 0 0
\(103\) 4.65523 + 14.3273i 0.458694 + 1.41171i 0.866744 + 0.498754i \(0.166209\pi\)
−0.408050 + 0.912960i \(0.633791\pi\)
\(104\) 0 0
\(105\) −0.949394 + 0.689775i −0.0926514 + 0.0673151i
\(106\) 0 0
\(107\) 0.160353 0.493515i 0.0155019 0.0477099i −0.943006 0.332775i \(-0.892015\pi\)
0.958508 + 0.285065i \(0.0920151\pi\)
\(108\) 0 0
\(109\) 0.285032 0.0273011 0.0136506 0.999907i \(-0.495655\pi\)
0.0136506 + 0.999907i \(0.495655\pi\)
\(110\) 0 0
\(111\) −23.7315 −2.25250
\(112\) 0 0
\(113\) −3.57504 + 11.0028i −0.336311 + 1.03506i 0.629761 + 0.776789i \(0.283153\pi\)
−0.966072 + 0.258271i \(0.916847\pi\)
\(114\) 0 0
\(115\) 0.0935520 0.0679695i 0.00872377 0.00633819i
\(116\) 0 0
\(117\) −0.989973 3.04682i −0.0915230 0.281679i
\(118\) 0 0
\(119\) 21.4604 + 15.5919i 1.96727 + 1.42930i
\(120\) 0 0
\(121\) −10.2673 + 3.94749i −0.933390 + 0.358862i
\(122\) 0 0
\(123\) 0.464894 + 0.337765i 0.0419180 + 0.0304552i
\(124\) 0 0
\(125\) −0.504704 1.55332i −0.0451421 0.138933i
\(126\) 0 0
\(127\) 13.8495 10.0623i 1.22895 0.892883i 0.232138 0.972683i \(-0.425428\pi\)
0.996811 + 0.0797996i \(0.0254280\pi\)
\(128\) 0 0
\(129\) −2.72713 + 8.39326i −0.240111 + 0.738985i
\(130\) 0 0
\(131\) −5.02344 −0.438900 −0.219450 0.975624i \(-0.570426\pi\)
−0.219450 + 0.975624i \(0.570426\pi\)
\(132\) 0 0
\(133\) −16.1679 −1.40194
\(134\) 0 0
\(135\) −0.187552 + 0.577226i −0.0161419 + 0.0496797i
\(136\) 0 0
\(137\) −2.43148 + 1.76657i −0.207735 + 0.150928i −0.686788 0.726857i \(-0.740980\pi\)
0.479053 + 0.877786i \(0.340980\pi\)
\(138\) 0 0
\(139\) 1.65652 + 5.09825i 0.140504 + 0.432428i 0.996406 0.0847114i \(-0.0269968\pi\)
−0.855901 + 0.517140i \(0.826997\pi\)
\(140\) 0 0
\(141\) −9.65140 7.01215i −0.812795 0.590530i
\(142\) 0 0
\(143\) −3.84407 + 8.06477i −0.321458 + 0.674410i
\(144\) 0 0
\(145\) −0.136319 0.0990413i −0.0113207 0.00822493i
\(146\) 0 0
\(147\) 3.32519 + 10.2339i 0.274257 + 0.844077i
\(148\) 0 0
\(149\) 4.70922 3.42145i 0.385794 0.280296i −0.377936 0.925832i \(-0.623366\pi\)
0.763730 + 0.645536i \(0.223366\pi\)
\(150\) 0 0
\(151\) 1.12657 3.46722i 0.0916788 0.282158i −0.894695 0.446677i \(-0.852607\pi\)
0.986374 + 0.164519i \(0.0526072\pi\)
\(152\) 0 0
\(153\) −9.01094 −0.728492
\(154\) 0 0
\(155\) 0.884303 0.0710289
\(156\) 0 0
\(157\) −0.0448569 + 0.138055i −0.00357997 + 0.0110180i −0.952831 0.303503i \(-0.901844\pi\)
0.949251 + 0.314521i \(0.101844\pi\)
\(158\) 0 0
\(159\) 16.3468 11.8766i 1.29638 0.941877i
\(160\) 0 0
\(161\) −0.763932 2.35114i −0.0602063 0.185296i
\(162\) 0 0
\(163\) −11.6809 8.48668i −0.914919 0.664728i 0.0273349 0.999626i \(-0.491298\pi\)
−0.942254 + 0.334899i \(0.891298\pi\)
\(164\) 0 0
\(165\) −0.976840 + 0.530716i −0.0760469 + 0.0413162i
\(166\) 0 0
\(167\) −14.1091 10.2508i −1.09179 0.793233i −0.112090 0.993698i \(-0.535755\pi\)
−0.979701 + 0.200465i \(0.935755\pi\)
\(168\) 0 0
\(169\) −1.77496 5.46275i −0.136535 0.420212i
\(170\) 0 0
\(171\) 4.44328 3.22823i 0.339786 0.246869i
\(172\) 0 0
\(173\) 5.63736 17.3500i 0.428601 1.31910i −0.470903 0.882185i \(-0.656072\pi\)
0.899504 0.436913i \(-0.143928\pi\)
\(174\) 0 0
\(175\) −17.4113 −1.31617
\(176\) 0 0
\(177\) 6.32489 0.475408
\(178\) 0 0
\(179\) 2.82688 8.70025i 0.211291 0.650288i −0.788105 0.615541i \(-0.788938\pi\)
0.999396 0.0347466i \(-0.0110624\pi\)
\(180\) 0 0
\(181\) −13.4621 + 9.78079i −1.00063 + 0.727001i −0.962223 0.272261i \(-0.912228\pi\)
−0.0384073 + 0.999262i \(0.512228\pi\)
\(182\) 0 0
\(183\) −4.38433 13.4936i −0.324099 0.997475i
\(184\) 0 0
\(185\) 1.53615 + 1.11608i 0.112940 + 0.0820558i
\(186\) 0 0
\(187\) 18.2326 + 17.2930i 1.33330 + 1.26459i
\(188\) 0 0
\(189\) 10.4972 + 7.62667i 0.763560 + 0.554759i
\(190\) 0 0
\(191\) −2.37239 7.30146i −0.171660 0.528315i 0.827805 0.561015i \(-0.189589\pi\)
−0.999465 + 0.0327007i \(0.989589\pi\)
\(192\) 0 0
\(193\) −15.9130 + 11.5615i −1.14544 + 0.832213i −0.987868 0.155294i \(-0.950367\pi\)
−0.157574 + 0.987507i \(0.550367\pi\)
\(194\) 0 0
\(195\) −0.279014 + 0.858716i −0.0199806 + 0.0614940i
\(196\) 0 0
\(197\) −22.7460 −1.62059 −0.810294 0.586024i \(-0.800692\pi\)
−0.810294 + 0.586024i \(0.800692\pi\)
\(198\) 0 0
\(199\) 6.85748 0.486114 0.243057 0.970012i \(-0.421850\pi\)
0.243057 + 0.970012i \(0.421850\pi\)
\(200\) 0 0
\(201\) −1.21226 + 3.73096i −0.0855064 + 0.263162i
\(202\) 0 0
\(203\) −2.91429 + 2.11735i −0.204543 + 0.148609i
\(204\) 0 0
\(205\) −0.0142079 0.0437273i −0.000992320 0.00305405i
\(206\) 0 0
\(207\) 0.679393 + 0.493608i 0.0472210 + 0.0343081i
\(208\) 0 0
\(209\) −15.1858 1.99516i −1.05042 0.138008i
\(210\) 0 0
\(211\) −9.30563 6.76094i −0.640626 0.465442i 0.219439 0.975626i \(-0.429577\pi\)
−0.860065 + 0.510184i \(0.829577\pi\)
\(212\) 0 0
\(213\) 7.69609 + 23.6861i 0.527327 + 1.62295i
\(214\) 0 0
\(215\) 0.571258 0.415043i 0.0389595 0.0283057i
\(216\) 0 0
\(217\) 5.84198 17.9798i 0.396580 1.22055i
\(218\) 0 0
\(219\) −23.2849 −1.57345
\(220\) 0 0
\(221\) 20.4096 1.37290
\(222\) 0 0
\(223\) 5.02745 15.4729i 0.336663 1.03614i −0.629235 0.777215i \(-0.716632\pi\)
0.965897 0.258926i \(-0.0833685\pi\)
\(224\) 0 0
\(225\) 4.78498 3.47649i 0.318999 0.231766i
\(226\) 0 0
\(227\) −1.91835 5.90406i −0.127325 0.391866i 0.866992 0.498321i \(-0.166050\pi\)
−0.994318 + 0.106455i \(0.966050\pi\)
\(228\) 0 0
\(229\) −16.6982 12.1319i −1.10345 0.801701i −0.121827 0.992551i \(-0.538875\pi\)
−0.981619 + 0.190850i \(0.938875\pi\)
\(230\) 0 0
\(231\) 4.33728 + 23.3673i 0.285372 + 1.53746i
\(232\) 0 0
\(233\) 8.31111 + 6.03837i 0.544479 + 0.395587i 0.825746 0.564043i \(-0.190755\pi\)
−0.281267 + 0.959630i \(0.590755\pi\)
\(234\) 0 0
\(235\) 0.294962 + 0.907799i 0.0192412 + 0.0592182i
\(236\) 0 0
\(237\) 2.86030 2.07813i 0.185796 0.134989i
\(238\) 0 0
\(239\) −6.19330 + 19.0610i −0.400611 + 1.23295i 0.523893 + 0.851784i \(0.324479\pi\)
−0.924505 + 0.381171i \(0.875521\pi\)
\(240\) 0 0
\(241\) −6.87625 −0.442938 −0.221469 0.975167i \(-0.571085\pi\)
−0.221469 + 0.975167i \(0.571085\pi\)
\(242\) 0 0
\(243\) −11.7103 −0.751216
\(244\) 0 0
\(245\) 0.266052 0.818825i 0.0169975 0.0523128i
\(246\) 0 0
\(247\) −10.0639 + 7.31186i −0.640352 + 0.465243i
\(248\) 0 0
\(249\) −2.97870 9.16750i −0.188768 0.580967i
\(250\) 0 0
\(251\) 4.20817 + 3.05742i 0.265618 + 0.192982i 0.712620 0.701550i \(-0.247508\pi\)
−0.447002 + 0.894533i \(0.647508\pi\)
\(252\) 0 0
\(253\) −0.427390 2.30259i −0.0268698 0.144762i
\(254\) 0 0
\(255\) 2.05462 + 1.49277i 0.128665 + 0.0934806i
\(256\) 0 0
\(257\) 5.74683 + 17.6869i 0.358478 + 1.10328i 0.953965 + 0.299916i \(0.0969588\pi\)
−0.595488 + 0.803364i \(0.703041\pi\)
\(258\) 0 0
\(259\) 32.8406 23.8601i 2.04062 1.48259i
\(260\) 0 0
\(261\) 0.378136 1.16378i 0.0234060 0.0720363i
\(262\) 0 0
\(263\) 1.27857 0.0788397 0.0394199 0.999223i \(-0.487449\pi\)
0.0394199 + 0.999223i \(0.487449\pi\)
\(264\) 0 0
\(265\) −1.61668 −0.0993120
\(266\) 0 0
\(267\) 3.99211 12.2865i 0.244313 0.751919i
\(268\) 0 0
\(269\) 2.17926 1.58333i 0.132872 0.0965372i −0.519364 0.854553i \(-0.673831\pi\)
0.652236 + 0.758016i \(0.273831\pi\)
\(270\) 0 0
\(271\) −3.20991 9.87910i −0.194988 0.600112i −0.999977 0.00682189i \(-0.997829\pi\)
0.804988 0.593291i \(-0.202171\pi\)
\(272\) 0 0
\(273\) 15.6163 + 11.3459i 0.945141 + 0.686685i
\(274\) 0 0
\(275\) −16.3536 2.14859i −0.986161 0.129565i
\(276\) 0 0
\(277\) −5.91429 4.29698i −0.355355 0.258181i 0.395757 0.918355i \(-0.370482\pi\)
−0.751112 + 0.660175i \(0.770482\pi\)
\(278\) 0 0
\(279\) 1.98450 + 6.10766i 0.118809 + 0.365656i
\(280\) 0 0
\(281\) 13.5472 9.84260i 0.808157 0.587160i −0.105139 0.994458i \(-0.533529\pi\)
0.913296 + 0.407297i \(0.133529\pi\)
\(282\) 0 0
\(283\) 6.32816 19.4761i 0.376170 1.15773i −0.566516 0.824051i \(-0.691709\pi\)
0.942686 0.333681i \(-0.108291\pi\)
\(284\) 0 0
\(285\) −1.54792 −0.0916908
\(286\) 0 0
\(287\) −0.982932 −0.0580206
\(288\) 0 0
\(289\) 12.4864 38.4292i 0.734494 2.26054i
\(290\) 0 0
\(291\) −11.6002 + 8.42804i −0.680016 + 0.494060i
\(292\) 0 0
\(293\) 5.76665 + 17.7479i 0.336891 + 1.03684i 0.965783 + 0.259352i \(0.0835089\pi\)
−0.628892 + 0.777493i \(0.716491\pi\)
\(294\) 0 0
\(295\) −0.409412 0.297455i −0.0238369 0.0173185i
\(296\) 0 0
\(297\) 8.91839 + 8.45875i 0.517497 + 0.490826i
\(298\) 0 0
\(299\) −1.53881 1.11801i −0.0889916 0.0646562i
\(300\) 0 0
\(301\) −4.66481 14.3568i −0.268875 0.827513i
\(302\) 0 0
\(303\) 6.66215 4.84034i 0.382731 0.278070i
\(304\) 0 0
\(305\) −0.350795 + 1.07964i −0.0200865 + 0.0618199i
\(306\) 0 0
\(307\) 16.2802 0.929160 0.464580 0.885531i \(-0.346205\pi\)
0.464580 + 0.885531i \(0.346205\pi\)
\(308\) 0 0
\(309\) 30.8339 1.75408
\(310\) 0 0
\(311\) 3.22987 9.94052i 0.183149 0.563675i −0.816762 0.576974i \(-0.804233\pi\)
0.999912 + 0.0132990i \(0.00423333\pi\)
\(312\) 0 0
\(313\) −6.81457 + 4.95107i −0.385182 + 0.279851i −0.763478 0.645833i \(-0.776510\pi\)
0.378296 + 0.925685i \(0.376510\pi\)
\(314\) 0 0
\(315\) 0.210712 + 0.648505i 0.0118723 + 0.0365391i
\(316\) 0 0
\(317\) 17.3685 + 12.6189i 0.975510 + 0.708749i 0.956701 0.291074i \(-0.0940125\pi\)
0.0188092 + 0.999823i \(0.494012\pi\)
\(318\) 0 0
\(319\) −2.99854 + 1.62910i −0.167886 + 0.0912121i
\(320\) 0 0
\(321\) −0.859254 0.624285i −0.0479589 0.0348442i
\(322\) 0 0
\(323\) 10.8124 + 33.2771i 0.601617 + 1.85159i
\(324\) 0 0
\(325\) −10.8379 + 7.87418i −0.601177 + 0.436781i
\(326\) 0 0
\(327\) 0.180279 0.554843i 0.00996948 0.0306829i
\(328\) 0 0
\(329\) 20.4061 1.12502
\(330\) 0 0
\(331\) −21.5452 −1.18423 −0.592117 0.805852i \(-0.701708\pi\)
−0.592117 + 0.805852i \(0.701708\pi\)
\(332\) 0 0
\(333\) −4.26115 + 13.1145i −0.233509 + 0.718668i
\(334\) 0 0
\(335\) 0.253935 0.184494i 0.0138739 0.0100800i
\(336\) 0 0
\(337\) 3.46278 + 10.6574i 0.188630 + 0.580543i 0.999992 0.00400074i \(-0.00127348\pi\)
−0.811362 + 0.584544i \(0.801273\pi\)
\(338\) 0 0
\(339\) 19.1570 + 13.9183i 1.04046 + 0.755940i
\(340\) 0 0
\(341\) 7.70584 16.1666i 0.417294 0.875473i
\(342\) 0 0
\(343\) 4.93598 + 3.58620i 0.266518 + 0.193637i
\(344\) 0 0
\(345\) −0.0731388 0.225098i −0.00393766 0.0121189i
\(346\) 0 0
\(347\) 10.1421 7.36867i 0.544456 0.395571i −0.281281 0.959625i \(-0.590759\pi\)
0.825737 + 0.564055i \(0.190759\pi\)
\(348\) 0 0
\(349\) −4.96963 + 15.2949i −0.266018 + 0.818719i 0.725439 + 0.688286i \(0.241637\pi\)
−0.991457 + 0.130433i \(0.958363\pi\)
\(350\) 0 0
\(351\) 9.98323 0.532865
\(352\) 0 0
\(353\) −16.9450 −0.901892 −0.450946 0.892551i \(-0.648913\pi\)
−0.450946 + 0.892551i \(0.648913\pi\)
\(354\) 0 0
\(355\) 0.615773 1.89515i 0.0326818 0.100584i
\(356\) 0 0
\(357\) 43.9246 31.9131i 2.32473 1.68902i
\(358\) 0 0
\(359\) −7.62469 23.4664i −0.402416 1.23851i −0.923034 0.384718i \(-0.874299\pi\)
0.520618 0.853789i \(-0.325701\pi\)
\(360\) 0 0
\(361\) −1.88197 1.36733i −0.0990508 0.0719646i
\(362\) 0 0
\(363\) 1.19023 + 22.4831i 0.0624708 + 1.18005i
\(364\) 0 0
\(365\) 1.50724 + 1.09508i 0.0788927 + 0.0573189i
\(366\) 0 0
\(367\) 9.56377 + 29.4343i 0.499225 + 1.53646i 0.810268 + 0.586060i \(0.199322\pi\)
−0.311043 + 0.950396i \(0.600678\pi\)
\(368\) 0 0
\(369\) 0.270129 0.196260i 0.0140624 0.0102169i
\(370\) 0 0
\(371\) −10.6803 + 32.8706i −0.554494 + 1.70656i
\(372\) 0 0
\(373\) 16.6908 0.864217 0.432108 0.901822i \(-0.357770\pi\)
0.432108 + 0.901822i \(0.357770\pi\)
\(374\) 0 0
\(375\) −3.34291 −0.172627
\(376\) 0 0
\(377\) −0.856469 + 2.63594i −0.0441104 + 0.135758i
\(378\) 0 0
\(379\) −13.4370 + 9.76252i −0.690210 + 0.501467i −0.876729 0.480985i \(-0.840279\pi\)
0.186519 + 0.982451i \(0.440279\pi\)
\(380\) 0 0
\(381\) −10.8276 33.3238i −0.554713 1.70723i
\(382\) 0 0
\(383\) −2.20817 1.60433i −0.112832 0.0819775i 0.529938 0.848036i \(-0.322215\pi\)
−0.642771 + 0.766059i \(0.722215\pi\)
\(384\) 0 0
\(385\) 0.818197 1.71656i 0.0416992 0.0874838i
\(386\) 0 0
\(387\) 4.14859 + 3.01412i 0.210884 + 0.153217i
\(388\) 0 0
\(389\) 4.71908 + 14.5238i 0.239267 + 0.736387i 0.996527 + 0.0832735i \(0.0265375\pi\)
−0.757260 + 0.653113i \(0.773462\pi\)
\(390\) 0 0
\(391\) −4.32827 + 3.14467i −0.218890 + 0.159033i
\(392\) 0 0
\(393\) −3.17727 + 9.77862i −0.160272 + 0.493266i
\(394\) 0 0
\(395\) −0.282881 −0.0142333
\(396\) 0 0
\(397\) −21.4810 −1.07810 −0.539050 0.842274i \(-0.681217\pi\)
−0.539050 + 0.842274i \(0.681217\pi\)
\(398\) 0 0
\(399\) −10.2260 + 31.4725i −0.511942 + 1.57560i
\(400\) 0 0
\(401\) 28.9448 21.0296i 1.44544 1.05017i 0.458564 0.888661i \(-0.348364\pi\)
0.986871 0.161509i \(-0.0516360\pi\)
\(402\) 0 0
\(403\) −4.49485 13.8337i −0.223904 0.689107i
\(404\) 0 0
\(405\) 1.47771 + 1.07362i 0.0734278 + 0.0533484i
\(406\) 0 0
\(407\) 33.7900 18.3581i 1.67491 0.909975i
\(408\) 0 0
\(409\) −8.54327 6.20705i −0.422437 0.306919i 0.356180 0.934417i \(-0.384079\pi\)
−0.778618 + 0.627499i \(0.784079\pi\)
\(410\) 0 0
\(411\) 1.90093 + 5.85045i 0.0937658 + 0.288581i
\(412\) 0 0
\(413\) −8.75261 + 6.35915i −0.430688 + 0.312913i
\(414\) 0 0
\(415\) −0.238329 + 0.733502i −0.0116991 + 0.0360062i
\(416\) 0 0
\(417\) 10.9720 0.537301
\(418\) 0 0
\(419\) −29.9952 −1.46536 −0.732680 0.680573i \(-0.761731\pi\)
−0.732680 + 0.680573i \(0.761731\pi\)
\(420\) 0 0
\(421\) 6.55267 20.1670i 0.319357 0.982881i −0.654566 0.756005i \(-0.727149\pi\)
0.973924 0.226876i \(-0.0728513\pi\)
\(422\) 0 0
\(423\) −5.60801 + 4.07446i −0.272671 + 0.198107i
\(424\) 0 0
\(425\) 11.6439 + 35.8362i 0.564812 + 1.73831i
\(426\) 0 0
\(427\) 19.6339 + 14.2649i 0.950150 + 0.690325i
\(428\) 0 0
\(429\) 13.2675 + 12.5837i 0.640563 + 0.607549i
\(430\) 0 0
\(431\) 10.8875 + 7.91021i 0.524431 + 0.381021i 0.818270 0.574833i \(-0.194933\pi\)
−0.293840 + 0.955855i \(0.594933\pi\)
\(432\) 0 0
\(433\) 9.24458 + 28.4519i 0.444266 + 1.36731i 0.883286 + 0.468834i \(0.155326\pi\)
−0.439020 + 0.898477i \(0.644674\pi\)
\(434\) 0 0
\(435\) −0.279014 + 0.202715i −0.0133777 + 0.00971946i
\(436\) 0 0
\(437\) 1.00766 3.10126i 0.0482029 0.148353i
\(438\) 0 0
\(439\) −33.1644 −1.58285 −0.791425 0.611266i \(-0.790661\pi\)
−0.791425 + 0.611266i \(0.790661\pi\)
\(440\) 0 0
\(441\) 6.25248 0.297737
\(442\) 0 0
\(443\) 8.59675 26.4581i 0.408444 1.25706i −0.509541 0.860447i \(-0.670185\pi\)
0.917985 0.396615i \(-0.129815\pi\)
\(444\) 0 0
\(445\) −0.836235 + 0.607560i −0.0396413 + 0.0288011i
\(446\) 0 0
\(447\) −3.68166 11.3310i −0.174137 0.535937i
\(448\) 0 0
\(449\) 5.90249 + 4.28841i 0.278556 + 0.202383i 0.718287 0.695747i \(-0.244926\pi\)
−0.439731 + 0.898129i \(0.644926\pi\)
\(450\) 0 0
\(451\) −0.923221 0.121296i −0.0434728 0.00571159i
\(452\) 0 0
\(453\) −6.03675 4.38595i −0.283631 0.206070i
\(454\) 0 0
\(455\) −0.477258 1.46885i −0.0223742 0.0688607i
\(456\) 0 0
\(457\) 13.0495 9.48103i 0.610430 0.443504i −0.239135 0.970986i \(-0.576864\pi\)
0.849566 + 0.527483i \(0.176864\pi\)
\(458\) 0 0
\(459\) 8.67727 26.7059i 0.405020 1.24652i
\(460\) 0 0
\(461\) 14.4253 0.671851 0.335926 0.941888i \(-0.390951\pi\)
0.335926 + 0.941888i \(0.390951\pi\)
\(462\) 0 0
\(463\) −19.7906 −0.919748 −0.459874 0.887984i \(-0.652105\pi\)
−0.459874 + 0.887984i \(0.652105\pi\)
\(464\) 0 0
\(465\) 0.559312 1.72138i 0.0259374 0.0798273i
\(466\) 0 0
\(467\) 30.5957 22.2291i 1.41580 1.02864i 0.423352 0.905965i \(-0.360853\pi\)
0.992447 0.122673i \(-0.0391465\pi\)
\(468\) 0 0
\(469\) −2.07359 6.38187i −0.0957497 0.294687i
\(470\) 0 0
\(471\) 0.240367 + 0.174637i 0.0110755 + 0.00804685i
\(472\) 0 0
\(473\) −2.60978 14.0603i −0.119998 0.646494i
\(474\) 0 0
\(475\) −18.5801 13.4993i −0.852515 0.619389i
\(476\) 0 0
\(477\) −3.62806 11.1660i −0.166118 0.511257i
\(478\) 0 0
\(479\) 31.0120 22.5316i 1.41698 1.02949i 0.424714 0.905328i \(-0.360375\pi\)
0.992262 0.124165i \(-0.0396253\pi\)
\(480\) 0 0
\(481\) 9.65140 29.7040i 0.440066 1.35438i
\(482\) 0 0
\(483\) −5.05991 −0.230234
\(484\) 0 0
\(485\) 1.14725 0.0520940
\(486\) 0 0
\(487\) −3.54083 + 10.8975i −0.160450 + 0.493815i −0.998672 0.0515142i \(-0.983595\pi\)
0.838222 + 0.545329i \(0.183595\pi\)
\(488\) 0 0
\(489\) −23.9082 + 17.3703i −1.08117 + 0.785513i
\(490\) 0 0
\(491\) −7.56701 23.2889i −0.341494 1.05101i −0.963434 0.267946i \(-0.913655\pi\)
0.621939 0.783065i \(-0.286345\pi\)
\(492\) 0 0
\(493\) 6.30691 + 4.58224i 0.284049 + 0.206374i
\(494\) 0 0
\(495\) 0.117885 + 0.635112i 0.00529854 + 0.0285462i
\(496\) 0 0
\(497\) −34.4645 25.0400i −1.54595 1.12320i
\(498\) 0 0
\(499\) −4.69978 14.4644i −0.210391 0.647516i −0.999449 0.0331977i \(-0.989431\pi\)
0.789058 0.614319i \(-0.210569\pi\)
\(500\) 0 0
\(501\) −28.8781 + 20.9811i −1.29018 + 0.937368i
\(502\) 0 0
\(503\) 8.23196 25.3354i 0.367045 1.12965i −0.581646 0.813442i \(-0.697591\pi\)
0.948691 0.316206i \(-0.102409\pi\)
\(504\) 0 0
\(505\) −0.658882 −0.0293198
\(506\) 0 0
\(507\) −11.7564 −0.522121
\(508\) 0 0
\(509\) −4.72544 + 14.5434i −0.209452 + 0.644626i 0.790050 + 0.613043i \(0.210055\pi\)
−0.999501 + 0.0315827i \(0.989945\pi\)
\(510\) 0 0
\(511\) 32.2226 23.4111i 1.42544 1.03564i
\(512\) 0 0
\(513\) 5.28881 + 16.2773i 0.233507 + 0.718660i
\(514\) 0 0
\(515\) −1.99589 1.45010i −0.0879496 0.0638991i
\(516\) 0 0
\(517\) 19.1665 + 2.51815i 0.842941 + 0.110748i
\(518\) 0 0
\(519\) −30.2080 21.9474i −1.32598 0.963383i
\(520\) 0 0
\(521\) −10.7044 32.9446i −0.468967 1.44333i −0.853925 0.520397i \(-0.825784\pi\)
0.384958 0.922934i \(-0.374216\pi\)
\(522\) 0 0
\(523\) −13.5192 + 9.82230i −0.591155 + 0.429499i −0.842728 0.538339i \(-0.819052\pi\)
0.251574 + 0.967838i \(0.419052\pi\)
\(524\) 0 0
\(525\) −11.0125 + 33.8929i −0.480624 + 1.47921i
\(526\) 0 0
\(527\) −40.9131 −1.78220
\(528\) 0 0
\(529\) −22.5014 −0.978322
\(530\) 0 0
\(531\) 1.13567 3.49524i 0.0492840 0.151681i
\(532\) 0 0
\(533\) −0.611837 + 0.444525i −0.0265016 + 0.0192545i
\(534\) 0 0
\(535\) 0.0262601 + 0.0808204i 0.00113532 + 0.00349417i
\(536\) 0 0
\(537\) −15.1479 11.0056i −0.653682 0.474928i
\(538\) 0 0
\(539\) −12.6512 11.9992i −0.544926 0.516841i
\(540\) 0 0
\(541\) −10.4552 7.59614i −0.449504 0.326583i 0.339896 0.940463i \(-0.389608\pi\)
−0.789400 + 0.613880i \(0.789608\pi\)
\(542\) 0 0
\(543\) 10.5247 + 32.3916i 0.451656 + 1.39006i
\(544\) 0 0
\(545\) −0.0377635 + 0.0274368i −0.00161761 + 0.00117526i
\(546\) 0 0
\(547\) −1.61370 + 4.96645i −0.0689968 + 0.212350i −0.979610 0.200910i \(-0.935610\pi\)
0.910613 + 0.413260i \(0.135610\pi\)
\(548\) 0 0
\(549\) −8.24403 −0.351846
\(550\) 0 0
\(551\) −4.75154 −0.202422
\(552\) 0 0
\(553\) −1.86880 + 5.75159i −0.0794696 + 0.244582i
\(554\) 0 0
\(555\) 3.14416 2.28436i 0.133462 0.0969659i
\(556\) 0 0
\(557\) 3.64711 + 11.2247i 0.154533 + 0.475604i 0.998113 0.0613991i \(-0.0195562\pi\)
−0.843580 + 0.537003i \(0.819556\pi\)
\(558\) 0 0
\(559\) −9.39645 6.82692i −0.397428 0.288748i
\(560\) 0 0
\(561\) 45.1944 24.5541i 1.90811 1.03667i
\(562\) 0 0
\(563\) 29.8190 + 21.6648i 1.25672 + 0.913061i 0.998592 0.0530501i \(-0.0168943\pi\)
0.258128 + 0.966111i \(0.416894\pi\)
\(564\) 0 0
\(565\) −0.585466 1.80188i −0.0246307 0.0758056i
\(566\) 0 0
\(567\) 31.5911 22.9523i 1.32670 0.963906i
\(568\) 0 0
\(569\) −8.33266 + 25.6453i −0.349323 + 1.07511i 0.609905 + 0.792475i \(0.291208\pi\)
−0.959228 + 0.282632i \(0.908792\pi\)
\(570\) 0 0
\(571\) 14.3565 0.600801 0.300400 0.953813i \(-0.402880\pi\)
0.300400 + 0.953813i \(0.402880\pi\)
\(572\) 0 0
\(573\) −15.7135 −0.656442
\(574\) 0 0
\(575\) 1.08515 3.33976i 0.0452540 0.139278i
\(576\) 0 0
\(577\) −8.57084 + 6.22708i −0.356809 + 0.259237i −0.751720 0.659483i \(-0.770775\pi\)
0.394911 + 0.918719i \(0.370775\pi\)
\(578\) 0 0
\(579\) 12.4408 + 38.2887i 0.517020 + 1.59123i
\(580\) 0 0
\(581\) 13.3392 + 9.69150i 0.553403 + 0.402071i
\(582\) 0 0
\(583\) −14.0878 + 29.5558i −0.583457 + 1.22408i
\(584\) 0 0
\(585\) 0.424443 + 0.308376i 0.0175486 + 0.0127498i
\(586\) 0 0
\(587\) −6.17859 19.0157i −0.255018 0.784864i −0.993826 0.110948i \(-0.964611\pi\)
0.738809 0.673915i \(-0.235389\pi\)
\(588\) 0 0
\(589\) 20.1741 14.6574i 0.831261 0.603947i
\(590\) 0 0
\(591\) −14.3866 + 44.2774i −0.591786 + 1.82133i
\(592\) 0 0
\(593\) 12.8414 0.527334 0.263667 0.964614i \(-0.415068\pi\)
0.263667 + 0.964614i \(0.415068\pi\)
\(594\) 0 0
\(595\) −4.34410 −0.178091
\(596\) 0 0
\(597\) 4.33728 13.3488i 0.177513 0.546329i
\(598\) 0 0
\(599\) −14.8097 + 10.7599i −0.605108 + 0.439636i −0.847688 0.530495i \(-0.822006\pi\)
0.242581 + 0.970131i \(0.422006\pi\)
\(600\) 0 0
\(601\) 4.98290 + 15.3358i 0.203257 + 0.625560i 0.999780 + 0.0209527i \(0.00666995\pi\)
−0.796524 + 0.604607i \(0.793330\pi\)
\(602\) 0 0
\(603\) 1.84412 + 1.33983i 0.0750985 + 0.0545623i
\(604\) 0 0
\(605\) 0.980320 1.51131i 0.0398557 0.0614436i
\(606\) 0 0
\(607\) 8.08900 + 5.87700i 0.328322 + 0.238540i 0.739718 0.672917i \(-0.234959\pi\)
−0.411396 + 0.911457i \(0.634959\pi\)
\(608\) 0 0
\(609\) 2.27839 + 7.01215i 0.0923249 + 0.284147i
\(610\) 0 0
\(611\) 12.7020 9.22855i 0.513868 0.373347i
\(612\) 0 0
\(613\) −12.3469 + 37.9997i −0.498685 + 1.53479i 0.312449 + 0.949934i \(0.398851\pi\)
−0.811134 + 0.584860i \(0.801149\pi\)
\(614\) 0 0
\(615\) −0.0941059 −0.00379471
\(616\) 0 0
\(617\) −28.5485 −1.14932 −0.574660 0.818392i \(-0.694866\pi\)
−0.574660 + 0.818392i \(0.694866\pi\)
\(618\) 0 0
\(619\) −4.02429 + 12.3855i −0.161750 + 0.497815i −0.998782 0.0493385i \(-0.984289\pi\)
0.837032 + 0.547154i \(0.184289\pi\)
\(620\) 0 0
\(621\) −2.11715 + 1.53820i −0.0849582 + 0.0617257i
\(622\) 0 0
\(623\) 6.82857 + 21.0162i 0.273581 + 0.841996i
\(624\) 0 0
\(625\) −19.9006 14.4586i −0.796022 0.578344i
\(626\) 0 0
\(627\) −13.4886 + 28.2987i −0.538683 + 1.13014i
\(628\) 0 0
\(629\) −71.0714 51.6364i −2.83380 2.05888i
\(630\) 0 0
\(631\) −6.00401 18.4784i −0.239016 0.735615i −0.996563 0.0828350i \(-0.973603\pi\)
0.757547 0.652780i \(-0.226397\pi\)
\(632\) 0 0
\(633\) −19.0466 + 13.8381i −0.757032 + 0.550016i
\(634\) 0 0
\(635\) −0.866325 + 2.66628i −0.0343791 + 0.105808i
\(636\) 0 0
\(637\) −14.1617 −0.561108
\(638\) 0 0
\(639\) 14.4712 0.572473
\(640\) 0 0
\(641\) −4.50108 + 13.8529i −0.177782 + 0.547156i −0.999750 0.0223779i \(-0.992876\pi\)
0.821968 + 0.569534i \(0.192876\pi\)
\(642\) 0 0
\(643\) −2.92158 + 2.12265i −0.115216 + 0.0837092i −0.643901 0.765109i \(-0.722685\pi\)
0.528685 + 0.848818i \(0.322685\pi\)
\(644\) 0 0
\(645\) −0.446609 1.37452i −0.0175852 0.0541217i
\(646\) 0 0
\(647\) 5.38652 + 3.91354i 0.211766 + 0.153857i 0.688612 0.725130i \(-0.258220\pi\)
−0.476846 + 0.878987i \(0.658220\pi\)
\(648\) 0 0
\(649\) −9.00564 + 4.89275i −0.353502 + 0.192057i
\(650\) 0 0
\(651\) −31.3044 22.7440i −1.22692 0.891408i
\(652\) 0 0
\(653\) −0.814815 2.50774i −0.0318862 0.0981356i 0.933847 0.357673i \(-0.116430\pi\)
−0.965733 + 0.259538i \(0.916430\pi\)
\(654\) 0 0
\(655\) 0.665548 0.483549i 0.0260051 0.0188938i
\(656\) 0 0
\(657\) −4.18096 + 12.8677i −0.163115 + 0.502015i
\(658\) 0 0
\(659\) −18.2059 −0.709200 −0.354600 0.935018i \(-0.615383\pi\)
−0.354600 + 0.935018i \(0.615383\pi\)
\(660\) 0 0
\(661\) −37.6750 −1.46539 −0.732693 0.680559i \(-0.761737\pi\)
−0.732693 + 0.680559i \(0.761737\pi\)
\(662\) 0 0
\(663\) 12.9088 39.7293i 0.501337 1.54296i
\(664\) 0 0
\(665\) 2.14207 1.55630i 0.0830658 0.0603509i
\(666\) 0 0
\(667\) −0.224509 0.690968i −0.00869303 0.0267544i
\(668\) 0 0
\(669\) −26.9397 19.5728i −1.04155 0.756730i
\(670\) 0 0
\(671\) 16.6809 + 15.8212i 0.643958 + 0.610769i
\(672\) 0 0
\(673\) −13.9996 10.1713i −0.539644 0.392074i 0.284309 0.958733i \(-0.408236\pi\)
−0.823953 + 0.566658i \(0.808236\pi\)
\(674\) 0 0
\(675\) 5.69555 + 17.5291i 0.219222 + 0.674695i
\(676\) 0 0
\(677\) 7.77933 5.65202i 0.298984 0.217225i −0.428171 0.903698i \(-0.640842\pi\)
0.727155 + 0.686473i \(0.240842\pi\)
\(678\) 0 0
\(679\) 7.57910 23.3261i 0.290859 0.895172i
\(680\) 0 0
\(681\) −12.7062 −0.486902
\(682\) 0 0
\(683\) 33.2554 1.27248 0.636241 0.771491i \(-0.280489\pi\)
0.636241 + 0.771491i \(0.280489\pi\)
\(684\) 0 0
\(685\) 0.152095 0.468101i 0.00581126 0.0178852i
\(686\) 0 0
\(687\) −34.1774 + 24.8314i −1.30395 + 0.947375i
\(688\) 0 0
\(689\) 8.21748 + 25.2908i 0.313061 + 0.963502i
\(690\) 0 0
\(691\) 13.7945 + 10.0223i 0.524768 + 0.381266i 0.818397 0.574653i \(-0.194863\pi\)
−0.293629 + 0.955919i \(0.594863\pi\)
\(692\) 0 0
\(693\) 13.6920 + 1.79889i 0.520115 + 0.0683344i
\(694\) 0 0
\(695\) −0.710221 0.516006i −0.0269402 0.0195732i
\(696\) 0 0
\(697\) 0.657340 + 2.02308i 0.0248985 + 0.0766297i
\(698\) 0 0
\(699\) 17.0110 12.3592i 0.643414 0.467468i
\(700\) 0 0
\(701\) 11.3166 34.8289i 0.427422 1.31547i −0.473234 0.880937i \(-0.656913\pi\)
0.900656 0.434533i \(-0.143087\pi\)
\(702\) 0 0
\(703\) 53.5442 2.01946
\(704\) 0 0
\(705\) 1.95368 0.0735798
\(706\) 0 0
\(707\) −4.35278 + 13.3965i −0.163703 + 0.503826i
\(708\) 0 0
\(709\) 15.8194 11.4935i 0.594112 0.431647i −0.249672 0.968330i \(-0.580323\pi\)
0.843784 + 0.536683i \(0.180323\pi\)
\(710\) 0 0
\(711\) −0.634826 1.95379i −0.0238078 0.0732729i
\(712\) 0 0
\(713\) 3.08470 + 2.24116i 0.115523 + 0.0839323i
\(714\) 0 0
\(715\) −0.267007 1.43851i −0.00998549 0.0537974i
\(716\) 0 0
\(717\) 33.1870 + 24.1118i 1.23939 + 0.900470i
\(718\) 0 0
\(719\) 1.09209 + 3.36110i 0.0407280 + 0.125348i 0.969353 0.245671i \(-0.0790084\pi\)
−0.928625 + 0.371019i \(0.879008\pi\)
\(720\) 0 0
\(721\) −42.6692 + 31.0010i −1.58908 + 1.15454i
\(722\) 0 0
\(723\) −4.34915 + 13.3853i −0.161747 + 0.497805i
\(724\) 0 0
\(725\) −5.11695 −0.190039
\(726\) 0 0
\(727\) 5.02836 0.186491 0.0932457 0.995643i \(-0.470276\pi\)
0.0932457 + 0.995643i \(0.470276\pi\)
\(728\) 0 0
\(729\) 2.93320 9.02746i 0.108637 0.334350i
\(730\) 0 0
\(731\) −26.4298 + 19.2024i −0.977540 + 0.710225i
\(732\) 0 0
\(733\) 3.52505 + 10.8490i 0.130201 + 0.400716i 0.994813 0.101724i \(-0.0324358\pi\)
−0.864612 + 0.502440i \(0.832436\pi\)
\(734\) 0 0
\(735\) −1.42565 1.03580i −0.0525859 0.0382059i
\(736\) 0 0
\(737\) −1.16009 6.25007i −0.0427326 0.230224i
\(738\) 0 0
\(739\) 3.65966 + 2.65890i 0.134623 + 0.0978091i 0.653059 0.757307i \(-0.273486\pi\)
−0.518436 + 0.855116i \(0.673486\pi\)
\(740\) 0 0
\(741\) 7.86796 + 24.2151i 0.289037 + 0.889564i
\(742\) 0 0
\(743\) −19.5365 + 14.1941i −0.716725 + 0.520731i −0.885336 0.464952i \(-0.846072\pi\)
0.168611 + 0.985683i \(0.446072\pi\)
\(744\) 0 0
\(745\) −0.294574 + 0.906605i −0.0107924 + 0.0332155i
\(746\) 0 0
\(747\) −5.60097 −0.204929
\(748\) 0 0
\(749\) 1.81673 0.0663820
\(750\) 0 0
\(751\) 4.56162 14.0392i 0.166456 0.512298i −0.832685 0.553747i \(-0.813197\pi\)
0.999141 + 0.0414489i \(0.0131974\pi\)
\(752\) 0 0
\(753\) 8.61319 6.25785i 0.313882 0.228049i
\(754\) 0 0
\(755\) 0.184492 + 0.567809i 0.00671436 + 0.0206647i
\(756\) 0 0
\(757\) 10.2060 + 7.41508i 0.370943 + 0.269506i 0.757602 0.652717i \(-0.226371\pi\)
−0.386659 + 0.922223i \(0.626371\pi\)
\(758\) 0 0
\(759\) −4.75253 0.624402i −0.172506 0.0226644i
\(760\) 0 0
\(761\) 20.0141 + 14.5411i 0.725509 + 0.527113i 0.888140 0.459574i \(-0.151998\pi\)
−0.162630 + 0.986687i \(0.551998\pi\)
\(762\) 0 0
\(763\) 0.308371 + 0.949069i 0.0111638 + 0.0343586i
\(764\) 0 0
\(765\) 1.19385 0.867381i 0.0431636 0.0313602i
\(766\) 0 0
\(767\) −2.57227 + 7.91664i −0.0928794 + 0.285853i
\(768\) 0 0
\(769\) −5.37741 −0.193914 −0.0969571 0.995289i \(-0.530911\pi\)
−0.0969571 + 0.995289i \(0.530911\pi\)
\(770\) 0 0
\(771\) 38.0642 1.37085
\(772\) 0 0
\(773\) −5.02699 + 15.4715i −0.180808 + 0.556471i −0.999851 0.0172619i \(-0.994505\pi\)
0.819043 + 0.573733i \(0.194505\pi\)
\(774\) 0 0
\(775\) 21.7256 15.7846i 0.780407 0.566999i
\(776\) 0 0
\(777\) −25.6747 79.0187i −0.921076 2.83478i
\(778\) 0 0
\(779\) −1.04892 0.762081i −0.0375813 0.0273044i
\(780\) 0 0
\(781\) −29.2809 27.7718i −1.04775 0.993754i
\(782\) 0 0
\(783\) 3.08499 + 2.24137i 0.110248 + 0.0801002i
\(784\) 0 0
\(785\) −0.00734599 0.0226086i −0.000262190 0.000806937i
\(786\) 0 0
\(787\) −15.0196 + 10.9124i −0.535392 + 0.388985i −0.822371 0.568952i \(-0.807349\pi\)
0.286979 + 0.957937i \(0.407349\pi\)
\(788\) 0 0
\(789\) 0.808678 2.48886i 0.0287897 0.0886056i
\(790\) 0 0
\(791\) −40.5038 −1.44015
\(792\) 0 0
\(793\) 18.6725 0.663081
\(794\) 0 0
\(795\) −1.02253 + 3.14703i −0.0362655 + 0.111614i
\(796\) 0 0
\(797\) −26.0278 + 18.9103i −0.921952 + 0.669837i −0.944009 0.329919i \(-0.892978\pi\)
0.0220572 + 0.999757i \(0.492978\pi\)
\(798\) 0 0
\(799\) −13.6467 42.0001i −0.482784 1.48586i
\(800\) 0 0
\(801\) −6.07290 4.41222i −0.214575 0.155898i
\(802\) 0 0
\(803\) 33.1541 18.0126i 1.16998 0.635650i
\(804\) 0 0
\(805\) 0.327530 + 0.237964i 0.0115439 + 0.00838714i
\(806\) 0 0
\(807\) −1.70375 5.24359i −0.0599747 0.184583i
\(808\) 0 0
\(809\) 23.4124 17.0101i 0.823138 0.598045i −0.0944717 0.995528i \(-0.530116\pi\)
0.917610 + 0.397483i \(0.130116\pi\)
\(810\) 0 0
\(811\) −3.10198 + 9.54691i −0.108925 + 0.335237i −0.990632 0.136561i \(-0.956395\pi\)
0.881706 + 0.471799i \(0.156395\pi\)
\(812\) 0 0
\(813\) −21.2609 −0.745652
\(814\) 0 0
\(815\) 2.36450 0.0828249
\(816\) 0 0
\(817\) 6.15309 18.9373i 0.215269 0.662531i
\(818\) 0 0
\(819\) 9.07395 6.59261i 0.317069 0.230364i
\(820\) 0 0
\(821\) 9.27874 + 28.5570i 0.323830 + 0.996647i 0.971966 + 0.235122i \(0.0755489\pi\)
−0.648136 + 0.761525i \(0.724451\pi\)
\(822\) 0 0
\(823\) 24.7215 + 17.9612i 0.861738 + 0.626089i 0.928357 0.371689i \(-0.121221\pi\)
−0.0666193 + 0.997778i \(0.521221\pi\)
\(824\) 0 0
\(825\) −14.5259 + 30.4750i −0.505728 + 1.06100i
\(826\) 0 0
\(827\) −4.75466 3.45446i −0.165336 0.120123i 0.502041 0.864844i \(-0.332583\pi\)
−0.667376 + 0.744721i \(0.732583\pi\)
\(828\) 0 0
\(829\) 3.23670 + 9.96152i 0.112415 + 0.345978i 0.991399 0.130873i \(-0.0417781\pi\)
−0.878984 + 0.476851i \(0.841778\pi\)
\(830\) 0 0
\(831\) −12.1052 + 8.79496i −0.419925 + 0.305094i
\(832\) 0 0
\(833\) −12.3092 + 37.8837i −0.426487 + 1.31259i
\(834\) 0 0
\(835\) 2.85602 0.0988366
\(836\) 0 0
\(837\) −20.0124 −0.691730
\(838\) 0 0
\(839\) −10.3026 + 31.7082i −0.355686 + 1.09469i 0.599924 + 0.800057i \(0.295197\pi\)
−0.955610 + 0.294633i \(0.904803\pi\)
\(840\) 0 0
\(841\) 22.6050 16.4235i 0.779484 0.566328i
\(842\) 0 0
\(843\) −10.5912 32.5963i −0.364779 1.12267i
\(844\) 0 0
\(845\) 0.760998 + 0.552897i 0.0261791 + 0.0190203i
\(846\) 0 0
\(847\) −24.2519 29.9162i −0.833306 1.02793i
\(848\) 0 0
\(849\) −33.9096 24.6368i −1.16377 0.845532i
\(850\) 0 0
\(851\) 2.52995 + 7.78640i 0.0867257 + 0.266914i
\(852\) 0 0
\(853\) −22.4071 + 16.2797i −0.767205 + 0.557407i −0.901112 0.433587i \(-0.857248\pi\)
0.133907 + 0.990994i \(0.457248\pi\)
\(854\) 0 0
\(855\) −0.277939 + 0.855407i −0.00950530 + 0.0292543i
\(856\) 0 0
\(857\) −2.13818 −0.0730387 −0.0365194 0.999333i \(-0.511627\pi\)
−0.0365194 + 0.999333i \(0.511627\pi\)
\(858\) 0 0
\(859\) 6.06982 0.207099 0.103550 0.994624i \(-0.466980\pi\)
0.103550 + 0.994624i \(0.466980\pi\)
\(860\) 0 0
\(861\) −0.621693 + 1.91337i −0.0211872 + 0.0652076i
\(862\) 0 0
\(863\) −24.1070 + 17.5148i −0.820613 + 0.596210i −0.916888 0.399145i \(-0.869307\pi\)
0.0962753 + 0.995355i \(0.469307\pi\)
\(864\) 0 0
\(865\) 0.923202 + 2.84132i 0.0313898 + 0.0966079i
\(866\) 0 0
\(867\) −66.9087 48.6120i −2.27234 1.65095i
\(868\) 0 0
\(869\) −2.46503 + 5.17158i −0.0836206 + 0.175434i
\(870\) 0 0
\(871\) −4.17690 3.03469i −0.141529 0.102827i
\(872\) 0 0
\(873\) 2.57459 + 7.92378i 0.0871367 + 0.268179i
\(874\) 0 0
\(875\) 4.62604 3.36102i 0.156389 0.113623i
\(876\) 0 0
\(877\) 11.4515 35.2440i 0.386688 1.19010i −0.548560 0.836111i \(-0.684824\pi\)
0.935248 0.353993i \(-0.115176\pi\)
\(878\) 0 0
\(879\) 38.1954 1.28830
\(880\) 0 0
\(881\) −10.6956 −0.360345 −0.180172 0.983635i \(-0.557666\pi\)
−0.180172 + 0.983635i \(0.557666\pi\)
\(882\) 0 0
\(883\) 4.97395 15.3082i 0.167387 0.515163i −0.831818 0.555049i \(-0.812699\pi\)
0.999204 + 0.0398858i \(0.0126994\pi\)
\(884\) 0 0
\(885\) −0.837975 + 0.608825i −0.0281682 + 0.0204654i
\(886\) 0 0
\(887\) 8.12229 + 24.9978i 0.272720 + 0.839345i 0.989814 + 0.142369i \(0.0454719\pi\)
−0.717094 + 0.696977i \(0.754528\pi\)
\(888\) 0 0
\(889\) 48.4879 + 35.2285i 1.62623 + 1.18153i
\(890\) 0 0
\(891\) 32.5044 17.6596i 1.08894 0.591619i
\(892\) 0 0
\(893\) 21.7760 + 15.8212i 0.728704 + 0.529435i
\(894\) 0 0
\(895\) 0.462944 + 1.42480i 0.0154745 + 0.0476257i
\(896\) 0 0
\(897\) −3.14960 + 2.28832i −0.105162 + 0.0764046i
\(898\) 0 0
\(899\) 1.71688 5.28401i 0.0572611 0.176232i
\(900\) 0 0
\(901\) 74.7972 2.49186
\(902\) 0 0
\(903\) −30.8974 −1.02820
\(904\) 0 0
\(905\) 0.842090 2.59169i 0.0279920 0.0861506i
\(906\) 0 0
\(907\) −5.33332 + 3.87489i −0.177090 + 0.128663i −0.672799 0.739825i \(-0.734908\pi\)
0.495709 + 0.868489i \(0.334908\pi\)
\(908\) 0 0
\(909\) −1.47862 4.55073i −0.0490428 0.150938i
\(910\) 0 0
\(911\) 35.7326 + 25.9613i 1.18387 + 0.860135i 0.992603 0.121402i \(-0.0387391\pi\)
0.191271 + 0.981537i \(0.438739\pi\)
\(912\) 0 0
\(913\) 11.3329 + 10.7488i 0.375065 + 0.355735i
\(914\) 0 0
\(915\) 1.87975 + 1.36572i 0.0621425 + 0.0451492i
\(916\) 0 0
\(917\) −5.43477 16.7265i −0.179472 0.552358i
\(918\) 0 0
\(919\) −25.4641 + 18.5008i −0.839983 + 0.610284i −0.922366 0.386317i \(-0.873747\pi\)
0.0823828 + 0.996601i \(0.473747\pi\)
\(920\) 0 0
\(921\) 10.2970 31.6910i 0.339299 1.04425i
\(922\) 0 0
\(923\) −32.7770 −1.07887
\(924\) 0 0
\(925\) 57.6620 1.89592
\(926\) 0 0
\(927\) 5.53643 17.0394i 0.181840 0.559646i
\(928\) 0 0
\(929\) 26.2675 19.0845i 0.861810 0.626142i −0.0665666 0.997782i \(-0.521204\pi\)
0.928377 + 0.371640i \(0.121204\pi\)
\(930\) 0 0
\(931\) −7.50246 23.0902i −0.245883 0.756751i
\(932\) 0 0
\(933\) −17.3074 12.5745i −0.566617 0.411672i
\(934\) 0 0
\(935\) −4.08021 0.536071i −0.133437 0.0175314i
\(936\) 0 0
\(937\) 23.4691 + 17.0513i 0.766701 + 0.557041i 0.900958 0.433905i \(-0.142865\pi\)
−0.134257 + 0.990947i \(0.542865\pi\)
\(938\) 0 0
\(939\) 5.32762 + 16.3967i 0.173860 + 0.535087i
\(940\) 0 0
\(941\) 4.76511 3.46205i 0.155338 0.112860i −0.507401 0.861710i \(-0.669394\pi\)
0.662739 + 0.748850i \(0.269394\pi\)
\(942\) 0 0
\(943\) 0.0612608 0.188541i 0.00199493 0.00613975i
\(944\) 0 0
\(945\) −2.12489 −0.0691228
\(946\) 0 0
\(947\) −52.2319 −1.69731 −0.848655 0.528947i \(-0.822587\pi\)
−0.848655 + 0.528947i \(0.822587\pi\)
\(948\) 0 0
\(949\) 9.46977 29.1450i 0.307402 0.946085i
\(950\) 0 0
\(951\) 35.5493 25.8281i 1.15277 0.837534i
\(952\) 0 0
\(953\) −11.8723 36.5391i −0.384581 1.18362i −0.936784 0.349909i \(-0.886213\pi\)
0.552203 0.833710i \(-0.313787\pi\)
\(954\) 0 0
\(955\) 1.01714 + 0.738997i 0.0329139 + 0.0239134i
\(956\) 0 0
\(957\) 1.27467 + 6.86734i 0.0412041 + 0.221990i
\(958\) 0 0
\(959\) −8.51271 6.18485i −0.274890 0.199719i
\(960\) 0 0
\(961\) −0.569149 1.75166i −0.0183596 0.0565052i
\(962\) 0 0
\(963\) −0.499275 + 0.362745i −0.0160889 + 0.0116893i
\(964\) 0 0
\(965\) 0.995400 3.06352i 0.0320430 0.0986183i
\(966\) 0 0
\(967\) 50.8436 1.63502 0.817509 0.575915i \(-0.195354\pi\)
0.817509 + 0.575915i \(0.195354\pi\)
\(968\) 0 0
\(969\) 71.6159 2.30063
\(970\) 0 0
\(971\) 2.44121 7.51327i 0.0783422 0.241112i −0.904214 0.427080i \(-0.859542\pi\)
0.982556 + 0.185968i \(0.0595421\pi\)
\(972\) 0 0
\(973\) −15.1834 + 11.0314i −0.486759 + 0.353651i
\(974\) 0 0
\(975\) 8.47304 + 26.0773i 0.271354 + 0.835143i
\(976\) 0 0
\(977\) 12.9596 + 9.41571i 0.414615 + 0.301235i 0.775467 0.631388i \(-0.217514\pi\)
−0.360853 + 0.932623i \(0.617514\pi\)
\(978\) 0 0
\(979\) 3.82032 + 20.5822i 0.122098 + 0.657809i
\(980\) 0 0
\(981\) −0.274246 0.199251i −0.00875599 0.00636160i
\(982\) 0 0
\(983\) −18.0716 55.6186i −0.576394 1.77396i −0.631383 0.775471i \(-0.717513\pi\)
0.0549895 0.998487i \(-0.482487\pi\)
\(984\) 0 0
\(985\) 3.01359 2.18950i 0.0960209 0.0697633i
\(986\) 0 0
\(987\) 12.9066 39.7225i 0.410822 1.26438i
\(988\) 0 0
\(989\) 3.04459 0.0968123
\(990\) 0 0
\(991\) −17.1741 −0.545552 −0.272776 0.962078i \(-0.587942\pi\)
−0.272776 + 0.962078i \(0.587942\pi\)
\(992\) 0 0
\(993\) −13.6271 + 41.9400i −0.432443 + 1.33092i
\(994\) 0 0
\(995\) −0.908538 + 0.660092i −0.0288026 + 0.0209263i
\(996\) 0 0
\(997\) 12.8382 + 39.5118i 0.406588 + 1.25135i 0.919562 + 0.392946i \(0.128544\pi\)
−0.512973 + 0.858405i \(0.671456\pi\)
\(998\) 0 0
\(999\) −34.7642 25.2577i −1.09989 0.799117i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.m.l.257.2 8
4.3 odd 2 704.2.m.i.257.1 8
8.3 odd 2 176.2.m.d.81.2 8
8.5 even 2 88.2.i.b.81.1 yes 8
11.3 even 5 inner 704.2.m.l.641.2 8
11.5 even 5 7744.2.a.di.1.4 4
11.6 odd 10 7744.2.a.dh.1.4 4
24.5 odd 2 792.2.r.g.433.1 8
44.3 odd 10 704.2.m.i.641.1 8
44.27 odd 10 7744.2.a.dr.1.1 4
44.39 even 10 7744.2.a.ds.1.1 4
88.3 odd 10 176.2.m.d.113.2 8
88.5 even 10 968.2.a.n.1.1 4
88.13 odd 10 968.2.i.t.753.2 8
88.21 odd 2 968.2.i.p.81.1 8
88.27 odd 10 1936.2.a.bb.1.4 4
88.29 odd 10 968.2.i.t.9.2 8
88.37 even 10 968.2.i.s.9.2 8
88.53 even 10 968.2.i.s.753.2 8
88.61 odd 10 968.2.a.m.1.1 4
88.69 even 10 88.2.i.b.25.1 8
88.83 even 10 1936.2.a.bc.1.4 4
88.85 odd 10 968.2.i.p.729.1 8
264.5 odd 10 8712.2.a.ce.1.3 4
264.149 even 10 8712.2.a.cd.1.3 4
264.245 odd 10 792.2.r.g.289.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.b.25.1 8 88.69 even 10
88.2.i.b.81.1 yes 8 8.5 even 2
176.2.m.d.81.2 8 8.3 odd 2
176.2.m.d.113.2 8 88.3 odd 10
704.2.m.i.257.1 8 4.3 odd 2
704.2.m.i.641.1 8 44.3 odd 10
704.2.m.l.257.2 8 1.1 even 1 trivial
704.2.m.l.641.2 8 11.3 even 5 inner
792.2.r.g.289.1 8 264.245 odd 10
792.2.r.g.433.1 8 24.5 odd 2
968.2.a.m.1.1 4 88.61 odd 10
968.2.a.n.1.1 4 88.5 even 10
968.2.i.p.81.1 8 88.21 odd 2
968.2.i.p.729.1 8 88.85 odd 10
968.2.i.s.9.2 8 88.37 even 10
968.2.i.s.753.2 8 88.53 even 10
968.2.i.t.9.2 8 88.29 odd 10
968.2.i.t.753.2 8 88.13 odd 10
1936.2.a.bb.1.4 4 88.27 odd 10
1936.2.a.bc.1.4 4 88.83 even 10
7744.2.a.dh.1.4 4 11.6 odd 10
7744.2.a.di.1.4 4 11.5 even 5
7744.2.a.dr.1.1 4 44.27 odd 10
7744.2.a.ds.1.1 4 44.39 even 10
8712.2.a.cd.1.3 4 264.149 even 10
8712.2.a.ce.1.3 4 264.5 odd 10