L(s) = 1 | + (4.08 + 2.97i)3-s + (1.46 − 4.50i)5-s + (3.91 + 5.39i)7-s + (5.10 + 15.7i)9-s + (−6.32 − 9.00i)11-s + (14.3 − 4.65i)13-s + (19.3 − 14.0i)15-s + (−16.9 − 5.52i)17-s + (−19.0 + 26.1i)19-s + 33.6i·21-s + 3.58·23-s + (2.04 + 1.48i)25-s + (−11.7 + 36.2i)27-s + (−7.50 − 10.3i)29-s + (−6.76 − 20.8i)31-s + ⋯ |
L(s) = 1 | + (1.36 + 0.990i)3-s + (0.293 − 0.901i)5-s + (0.559 + 0.770i)7-s + (0.567 + 1.74i)9-s + (−0.574 − 0.818i)11-s + (1.10 − 0.357i)13-s + (1.29 − 0.938i)15-s + (−0.999 − 0.324i)17-s + (−1.00 + 1.37i)19-s + 1.60i·21-s + 0.156·23-s + (0.0816 + 0.0592i)25-s + (−0.435 + 1.34i)27-s + (−0.258 − 0.356i)29-s + (−0.218 − 0.671i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.27100 + 0.745233i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.27100 + 0.745233i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (6.32 + 9.00i)T \) |
good | 3 | \( 1 + (-4.08 - 2.97i)T + (2.78 + 8.55i)T^{2} \) |
| 5 | \( 1 + (-1.46 + 4.50i)T + (-20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (-3.91 - 5.39i)T + (-15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (-14.3 + 4.65i)T + (136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (16.9 + 5.52i)T + (233. + 169. i)T^{2} \) |
| 19 | \( 1 + (19.0 - 26.1i)T + (-111. - 343. i)T^{2} \) |
| 23 | \( 1 - 3.58T + 529T^{2} \) |
| 29 | \( 1 + (7.50 + 10.3i)T + (-259. + 799. i)T^{2} \) |
| 31 | \( 1 + (6.76 + 20.8i)T + (-777. + 564. i)T^{2} \) |
| 37 | \( 1 + (-22.4 + 16.2i)T + (423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (29.1 - 40.0i)T + (-519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 + 16.8iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (63.0 + 45.8i)T + (682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-3.06 - 9.41i)T + (-2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-29.6 + 21.5i)T + (1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (26.9 + 8.74i)T + (3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 - 30.7T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-12.6 + 39.0i)T + (-4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (36.3 + 49.9i)T + (-1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (118. - 38.4i)T + (5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-2.94 - 0.956i)T + (5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 - 60.4T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-14.8 - 45.6i)T + (-7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.98291743569626937401008683198, −11.40418653338596517910353302985, −10.40026893286873565120121287004, −9.278940532613401237360451695288, −8.475948375288388748898390020549, −8.189149315397245042566738156639, −5.88538369297446988395421980117, −4.76169769578713731810963550185, −3.54615376212845005359259548791, −2.07956297410199193584629502119,
1.74367606147749083446988587576, 2.86643998241295459988294250665, 4.35495673973311382728311799356, 6.61991885246444771806974354288, 7.10040815286337837435642394803, 8.230332821372581660278299945315, 9.052329134665939077841640872126, 10.46132106211160510203878330661, 11.23564408022543122798404659632, 12.90987031925461686090346181936