L(s) = 1 | + (4.08 + 2.97i)3-s + (1.46 − 4.50i)5-s + (3.91 + 5.39i)7-s + (5.10 + 15.7i)9-s + (−6.32 − 9.00i)11-s + (14.3 − 4.65i)13-s + (19.3 − 14.0i)15-s + (−16.9 − 5.52i)17-s + (−19.0 + 26.1i)19-s + 33.6i·21-s + 3.58·23-s + (2.04 + 1.48i)25-s + (−11.7 + 36.2i)27-s + (−7.50 − 10.3i)29-s + (−6.76 − 20.8i)31-s + ⋯ |
L(s) = 1 | + (1.36 + 0.990i)3-s + (0.293 − 0.901i)5-s + (0.559 + 0.770i)7-s + (0.567 + 1.74i)9-s + (−0.574 − 0.818i)11-s + (1.10 − 0.357i)13-s + (1.29 − 0.938i)15-s + (−0.999 − 0.324i)17-s + (−1.00 + 1.37i)19-s + 1.60i·21-s + 0.156·23-s + (0.0816 + 0.0592i)25-s + (−0.435 + 1.34i)27-s + (−0.258 − 0.356i)29-s + (−0.218 − 0.671i)31-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)(0.805−0.592i)Λ(3−s)
Λ(s)=(=(176s/2ΓC(s+1)L(s)(0.805−0.592i)Λ(1−s)
Degree: |
2 |
Conductor: |
176
= 24⋅11
|
Sign: |
0.805−0.592i
|
Analytic conductor: |
4.79565 |
Root analytic conductor: |
2.18989 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ176(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 176, ( :1), 0.805−0.592i)
|
Particular Values
L(23) |
≈ |
2.27100+0.745233i |
L(21) |
≈ |
2.27100+0.745233i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(6.32+9.00i)T |
good | 3 | 1+(−4.08−2.97i)T+(2.78+8.55i)T2 |
| 5 | 1+(−1.46+4.50i)T+(−20.2−14.6i)T2 |
| 7 | 1+(−3.91−5.39i)T+(−15.1+46.6i)T2 |
| 13 | 1+(−14.3+4.65i)T+(136.−99.3i)T2 |
| 17 | 1+(16.9+5.52i)T+(233.+169.i)T2 |
| 19 | 1+(19.0−26.1i)T+(−111.−343.i)T2 |
| 23 | 1−3.58T+529T2 |
| 29 | 1+(7.50+10.3i)T+(−259.+799.i)T2 |
| 31 | 1+(6.76+20.8i)T+(−777.+564.i)T2 |
| 37 | 1+(−22.4+16.2i)T+(423.−1.30e3i)T2 |
| 41 | 1+(29.1−40.0i)T+(−519.−1.59e3i)T2 |
| 43 | 1+16.8iT−1.84e3T2 |
| 47 | 1+(63.0+45.8i)T+(682.+2.10e3i)T2 |
| 53 | 1+(−3.06−9.41i)T+(−2.27e3+1.65e3i)T2 |
| 59 | 1+(−29.6+21.5i)T+(1.07e3−3.31e3i)T2 |
| 61 | 1+(26.9+8.74i)T+(3.01e3+2.18e3i)T2 |
| 67 | 1−30.7T+4.48e3T2 |
| 71 | 1+(−12.6+39.0i)T+(−4.07e3−2.96e3i)T2 |
| 73 | 1+(36.3+49.9i)T+(−1.64e3+5.06e3i)T2 |
| 79 | 1+(118.−38.4i)T+(5.04e3−3.66e3i)T2 |
| 83 | 1+(−2.94−0.956i)T+(5.57e3+4.04e3i)T2 |
| 89 | 1−60.4T+7.92e3T2 |
| 97 | 1+(−14.8−45.6i)T+(−7.61e3+5.53e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.98291743569626937401008683198, −11.40418653338596517910353302985, −10.40026893286873565120121287004, −9.278940532613401237360451695288, −8.475948375288388748898390020549, −8.189149315397245042566738156639, −5.88538369297446988395421980117, −4.76169769578713731810963550185, −3.54615376212845005359259548791, −2.07956297410199193584629502119,
1.74367606147749083446988587576, 2.86643998241295459988294250665, 4.35495673973311382728311799356, 6.61991885246444771806974354288, 7.10040815286337837435642394803, 8.230332821372581660278299945315, 9.052329134665939077841640872126, 10.46132106211160510203878330661, 11.23564408022543122798404659632, 12.90987031925461686090346181936