Properties

Label 2-176-44.43-c5-0-2
Degree 22
Conductor 176176
Sign 0.8340.551i0.834 - 0.551i
Analytic cond. 28.227528.2275
Root an. cond. 5.312965.31296
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 26.5i·3-s − 36.9·5-s − 239.·7-s − 463.·9-s + (334. − 221. i)11-s + 809. i·13-s + 981. i·15-s + 32.3i·17-s + 1.38e3·19-s + 6.37e3i·21-s − 2.85e3i·23-s − 1.76e3·25-s + 5.86e3i·27-s − 5.50e3i·29-s + 3.47e3i·31-s + ⋯
L(s)  = 1  − 1.70i·3-s − 0.660·5-s − 1.85·7-s − 1.90·9-s + (0.834 − 0.551i)11-s + 1.32i·13-s + 1.12i·15-s + 0.0271i·17-s + 0.882·19-s + 3.15i·21-s − 1.12i·23-s − 0.563·25-s + 1.54i·27-s − 1.21i·29-s + 0.650i·31-s + ⋯

Functional equation

Λ(s)=(176s/2ΓC(s)L(s)=((0.8340.551i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.834 - 0.551i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(176s/2ΓC(s+5/2)L(s)=((0.8340.551i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.834 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 176176    =    24112^{4} \cdot 11
Sign: 0.8340.551i0.834 - 0.551i
Analytic conductor: 28.227528.2275
Root analytic conductor: 5.312965.31296
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ176(175,)\chi_{176} (175, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 176, ( :5/2), 0.8340.551i)(2,\ 176,\ (\ :5/2),\ 0.834 - 0.551i)

Particular Values

L(3)L(3) \approx 0.43302659150.4330265915
L(12)L(\frac12) \approx 0.43302659150.4330265915
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
11 1+(334.+221.i)T 1 + (-334. + 221. i)T
good3 1+26.5iT243T2 1 + 26.5iT - 243T^{2}
5 1+36.9T+3.12e3T2 1 + 36.9T + 3.12e3T^{2}
7 1+239.T+1.68e4T2 1 + 239.T + 1.68e4T^{2}
13 1809.iT3.71e5T2 1 - 809. iT - 3.71e5T^{2}
17 132.3iT1.41e6T2 1 - 32.3iT - 1.41e6T^{2}
19 11.38e3T+2.47e6T2 1 - 1.38e3T + 2.47e6T^{2}
23 1+2.85e3iT6.43e6T2 1 + 2.85e3iT - 6.43e6T^{2}
29 1+5.50e3iT2.05e7T2 1 + 5.50e3iT - 2.05e7T^{2}
31 13.47e3iT2.86e7T2 1 - 3.47e3iT - 2.86e7T^{2}
37 14.53e3T+6.93e7T2 1 - 4.53e3T + 6.93e7T^{2}
41 1+5.08e3iT1.15e8T2 1 + 5.08e3iT - 1.15e8T^{2}
43 1+4.92e3T+1.47e8T2 1 + 4.92e3T + 1.47e8T^{2}
47 12.29e4iT2.29e8T2 1 - 2.29e4iT - 2.29e8T^{2}
53 1+2.91e4T+4.18e8T2 1 + 2.91e4T + 4.18e8T^{2}
59 1+2.19e4iT7.14e8T2 1 + 2.19e4iT - 7.14e8T^{2}
61 14.58e4iT8.44e8T2 1 - 4.58e4iT - 8.44e8T^{2}
67 13.44e4iT1.35e9T2 1 - 3.44e4iT - 1.35e9T^{2}
71 14.48e4iT1.80e9T2 1 - 4.48e4iT - 1.80e9T^{2}
73 17.78e4iT2.07e9T2 1 - 7.78e4iT - 2.07e9T^{2}
79 13.65e4T+3.07e9T2 1 - 3.65e4T + 3.07e9T^{2}
83 18.73e4T+3.93e9T2 1 - 8.73e4T + 3.93e9T^{2}
89 13.23e4T+5.58e9T2 1 - 3.23e4T + 5.58e9T^{2}
97 1+5.64e3T+8.58e9T2 1 + 5.64e3T + 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.04802934813011952208704893885, −11.41309088070036893789758303801, −9.679409324171748533122521526243, −8.730157447612595716648616842086, −7.52339422785005380697300390539, −6.60389177367979232088459677821, −6.16079829985901113570513727036, −3.86134808624031372765512139133, −2.61507539095004284726052741868, −0.977821897289204595209039719420, 0.17254678738346439952513995445, 3.31623272884091750862991744845, 3.59300736588799838765548816968, 5.05036662740054373950732436859, 6.21934861472821741500270923728, 7.65593674518056729084015116894, 9.197057660871993121434372910477, 9.668513166820676413543371425565, 10.45115582256804198081086666540, 11.58520389751664309409609699759

Graph of the ZZ-function along the critical line