Properties

Label 2-176-44.43-c5-0-2
Degree $2$
Conductor $176$
Sign $0.834 - 0.551i$
Analytic cond. $28.2275$
Root an. cond. $5.31296$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 26.5i·3-s − 36.9·5-s − 239.·7-s − 463.·9-s + (334. − 221. i)11-s + 809. i·13-s + 981. i·15-s + 32.3i·17-s + 1.38e3·19-s + 6.37e3i·21-s − 2.85e3i·23-s − 1.76e3·25-s + 5.86e3i·27-s − 5.50e3i·29-s + 3.47e3i·31-s + ⋯
L(s)  = 1  − 1.70i·3-s − 0.660·5-s − 1.85·7-s − 1.90·9-s + (0.834 − 0.551i)11-s + 1.32i·13-s + 1.12i·15-s + 0.0271i·17-s + 0.882·19-s + 3.15i·21-s − 1.12i·23-s − 0.563·25-s + 1.54i·27-s − 1.21i·29-s + 0.650i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.834 - 0.551i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.834 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(176\)    =    \(2^{4} \cdot 11\)
Sign: $0.834 - 0.551i$
Analytic conductor: \(28.2275\)
Root analytic conductor: \(5.31296\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{176} (175, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 176,\ (\ :5/2),\ 0.834 - 0.551i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4330265915\)
\(L(\frac12)\) \(\approx\) \(0.4330265915\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + (-334. + 221. i)T \)
good3 \( 1 + 26.5iT - 243T^{2} \)
5 \( 1 + 36.9T + 3.12e3T^{2} \)
7 \( 1 + 239.T + 1.68e4T^{2} \)
13 \( 1 - 809. iT - 3.71e5T^{2} \)
17 \( 1 - 32.3iT - 1.41e6T^{2} \)
19 \( 1 - 1.38e3T + 2.47e6T^{2} \)
23 \( 1 + 2.85e3iT - 6.43e6T^{2} \)
29 \( 1 + 5.50e3iT - 2.05e7T^{2} \)
31 \( 1 - 3.47e3iT - 2.86e7T^{2} \)
37 \( 1 - 4.53e3T + 6.93e7T^{2} \)
41 \( 1 + 5.08e3iT - 1.15e8T^{2} \)
43 \( 1 + 4.92e3T + 1.47e8T^{2} \)
47 \( 1 - 2.29e4iT - 2.29e8T^{2} \)
53 \( 1 + 2.91e4T + 4.18e8T^{2} \)
59 \( 1 + 2.19e4iT - 7.14e8T^{2} \)
61 \( 1 - 4.58e4iT - 8.44e8T^{2} \)
67 \( 1 - 3.44e4iT - 1.35e9T^{2} \)
71 \( 1 - 4.48e4iT - 1.80e9T^{2} \)
73 \( 1 - 7.78e4iT - 2.07e9T^{2} \)
79 \( 1 - 3.65e4T + 3.07e9T^{2} \)
83 \( 1 - 8.73e4T + 3.93e9T^{2} \)
89 \( 1 - 3.23e4T + 5.58e9T^{2} \)
97 \( 1 + 5.64e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.04802934813011952208704893885, −11.41309088070036893789758303801, −9.679409324171748533122521526243, −8.730157447612595716648616842086, −7.52339422785005380697300390539, −6.60389177367979232088459677821, −6.16079829985901113570513727036, −3.86134808624031372765512139133, −2.61507539095004284726052741868, −0.977821897289204595209039719420, 0.17254678738346439952513995445, 3.31623272884091750862991744845, 3.59300736588799838765548816968, 5.05036662740054373950732436859, 6.21934861472821741500270923728, 7.65593674518056729084015116894, 9.197057660871993121434372910477, 9.668513166820676413543371425565, 10.45115582256804198081086666540, 11.58520389751664309409609699759

Graph of the $Z$-function along the critical line