L(s) = 1 | − 26.5i·3-s − 36.9·5-s − 239.·7-s − 463.·9-s + (334. − 221. i)11-s + 809. i·13-s + 981. i·15-s + 32.3i·17-s + 1.38e3·19-s + 6.37e3i·21-s − 2.85e3i·23-s − 1.76e3·25-s + 5.86e3i·27-s − 5.50e3i·29-s + 3.47e3i·31-s + ⋯ |
L(s) = 1 | − 1.70i·3-s − 0.660·5-s − 1.85·7-s − 1.90·9-s + (0.834 − 0.551i)11-s + 1.32i·13-s + 1.12i·15-s + 0.0271i·17-s + 0.882·19-s + 3.15i·21-s − 1.12i·23-s − 0.563·25-s + 1.54i·27-s − 1.21i·29-s + 0.650i·31-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)(0.834−0.551i)Λ(6−s)
Λ(s)=(=(176s/2ΓC(s+5/2)L(s)(0.834−0.551i)Λ(1−s)
Degree: |
2 |
Conductor: |
176
= 24⋅11
|
Sign: |
0.834−0.551i
|
Analytic conductor: |
28.2275 |
Root analytic conductor: |
5.31296 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ176(175,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 176, ( :5/2), 0.834−0.551i)
|
Particular Values
L(3) |
≈ |
0.4330265915 |
L(21) |
≈ |
0.4330265915 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−334.+221.i)T |
good | 3 | 1+26.5iT−243T2 |
| 5 | 1+36.9T+3.12e3T2 |
| 7 | 1+239.T+1.68e4T2 |
| 13 | 1−809.iT−3.71e5T2 |
| 17 | 1−32.3iT−1.41e6T2 |
| 19 | 1−1.38e3T+2.47e6T2 |
| 23 | 1+2.85e3iT−6.43e6T2 |
| 29 | 1+5.50e3iT−2.05e7T2 |
| 31 | 1−3.47e3iT−2.86e7T2 |
| 37 | 1−4.53e3T+6.93e7T2 |
| 41 | 1+5.08e3iT−1.15e8T2 |
| 43 | 1+4.92e3T+1.47e8T2 |
| 47 | 1−2.29e4iT−2.29e8T2 |
| 53 | 1+2.91e4T+4.18e8T2 |
| 59 | 1+2.19e4iT−7.14e8T2 |
| 61 | 1−4.58e4iT−8.44e8T2 |
| 67 | 1−3.44e4iT−1.35e9T2 |
| 71 | 1−4.48e4iT−1.80e9T2 |
| 73 | 1−7.78e4iT−2.07e9T2 |
| 79 | 1−3.65e4T+3.07e9T2 |
| 83 | 1−8.73e4T+3.93e9T2 |
| 89 | 1−3.23e4T+5.58e9T2 |
| 97 | 1+5.64e3T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.04802934813011952208704893885, −11.41309088070036893789758303801, −9.679409324171748533122521526243, −8.730157447612595716648616842086, −7.52339422785005380697300390539, −6.60389177367979232088459677821, −6.16079829985901113570513727036, −3.86134808624031372765512139133, −2.61507539095004284726052741868, −0.977821897289204595209039719420,
0.17254678738346439952513995445, 3.31623272884091750862991744845, 3.59300736588799838765548816968, 5.05036662740054373950732436859, 6.21934861472821741500270923728, 7.65593674518056729084015116894, 9.197057660871993121434372910477, 9.668513166820676413543371425565, 10.45115582256804198081086666540, 11.58520389751664309409609699759