L(s) = 1 | − 26.5i·3-s − 36.9·5-s − 239.·7-s − 463.·9-s + (334. − 221. i)11-s + 809. i·13-s + 981. i·15-s + 32.3i·17-s + 1.38e3·19-s + 6.37e3i·21-s − 2.85e3i·23-s − 1.76e3·25-s + 5.86e3i·27-s − 5.50e3i·29-s + 3.47e3i·31-s + ⋯ |
L(s) = 1 | − 1.70i·3-s − 0.660·5-s − 1.85·7-s − 1.90·9-s + (0.834 − 0.551i)11-s + 1.32i·13-s + 1.12i·15-s + 0.0271i·17-s + 0.882·19-s + 3.15i·21-s − 1.12i·23-s − 0.563·25-s + 1.54i·27-s − 1.21i·29-s + 0.650i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.834 - 0.551i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.834 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.4330265915\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4330265915\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-334. + 221. i)T \) |
good | 3 | \( 1 + 26.5iT - 243T^{2} \) |
| 5 | \( 1 + 36.9T + 3.12e3T^{2} \) |
| 7 | \( 1 + 239.T + 1.68e4T^{2} \) |
| 13 | \( 1 - 809. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 32.3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 1.38e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 2.85e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 5.50e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 3.47e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 4.53e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 5.08e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 4.92e3T + 1.47e8T^{2} \) |
| 47 | \( 1 - 2.29e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 2.91e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 2.19e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 - 4.58e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 - 3.44e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 4.48e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 - 7.78e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 3.65e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 8.73e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 3.23e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 5.64e3T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.04802934813011952208704893885, −11.41309088070036893789758303801, −9.679409324171748533122521526243, −8.730157447612595716648616842086, −7.52339422785005380697300390539, −6.60389177367979232088459677821, −6.16079829985901113570513727036, −3.86134808624031372765512139133, −2.61507539095004284726052741868, −0.977821897289204595209039719420,
0.17254678738346439952513995445, 3.31623272884091750862991744845, 3.59300736588799838765548816968, 5.05036662740054373950732436859, 6.21934861472821741500270923728, 7.65593674518056729084015116894, 9.197057660871993121434372910477, 9.668513166820676413543371425565, 10.45115582256804198081086666540, 11.58520389751664309409609699759