Properties

Label 176.6.e.c
Level $176$
Weight $6$
Character orbit 176.e
Analytic conductor $28.228$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(175,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.175");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 176.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.2275522871\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4 x^{7} - 7362 x^{6} + 22100 x^{5} + 14183534 x^{4} - 28403906 x^{3} + 315403855 x^{2} + \cdots + 1477121929252 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} + (\beta_1 + 12) q^{5} - \beta_{7} q^{7} + (5 \beta_1 - 219) q^{9} + (\beta_{7} + \beta_{6} + \cdots - 4 \beta_{4}) q^{11} - \beta_{3} q^{13} + ( - 3 \beta_{6} + 14 \beta_{4}) q^{15}+ \cdots + ( - 604 \beta_{7} + \cdots + 2966 \beta_{4}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 100 q^{5} - 1732 q^{9} - 4212 q^{25} - 16588 q^{33} + 6644 q^{37} + 76040 q^{45} + 142472 q^{49} - 176400 q^{53} - 114876 q^{69} - 155584 q^{77} - 29840 q^{81} + 290628 q^{89} + 313012 q^{93} - 595068 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4 x^{7} - 7362 x^{6} + 22100 x^{5} + 14183534 x^{4} - 28403906 x^{3} + 315403855 x^{2} + \cdots + 1477121929252 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 76 \nu^{6} + 228 \nu^{5} + 412647 \nu^{4} - 825674 \nu^{3} + 22803321 \nu^{2} + \cdots - 1084025696458 ) / 23022410833 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 161252 \nu^{6} + 483756 \nu^{5} + 2087234176 \nu^{4} - 4175274612 \nu^{3} + \cdots + 10271975481128 ) / 2279218672467 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 461842 \nu^{6} + 1385526 \nu^{5} + 3113454440 \nu^{4} - 6229218090 \nu^{3} + \cdots + 107683947517024 ) / 2279218672467 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 115993072 \nu^{7} + 405975752 \nu^{6} + 801680254270 \nu^{5} - 2005215575055 \nu^{4} + \cdots + 23\!\cdots\!98 ) / 44\!\cdots\!95 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 560777242 \nu^{7} - 1962720347 \nu^{6} - 2625291397405 \nu^{5} + 6568135294380 \nu^{4} + \cdots + 49\!\cdots\!57 ) / 13\!\cdots\!85 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 402051692 \nu^{7} - 1407180922 \nu^{6} - 3278956814096 \nu^{5} + 8200909987545 \nu^{4} + \cdots - 10\!\cdots\!96 ) / 26\!\cdots\!17 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 2314028092 \nu^{7} - 8099098322 \nu^{6} - 18288430196150 \nu^{5} + 45741323236180 \nu^{4} + \cdots + 61\!\cdots\!72 ) / 13\!\cdots\!85 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{6} - 2\beta_{5} - 9\beta_{4} + 8 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{6} - 2\beta_{5} - 9\beta_{4} - 12\beta_{3} + 6\beta_{2} + 608\beta _1 + 29176 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2916\beta_{7} - 5970\beta_{6} - 6588\beta_{5} - 25714\beta_{4} - 18\beta_{3} + 9\beta_{2} + 912\beta _1 + 43760 ) / 16 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5832 \beta_{7} - 11939 \beta_{6} - 13174 \beta_{5} - 51419 \beta_{4} - 54720 \beta_{3} + \cdots + 102499816 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 8982828 \beta_{7} - 28104686 \beta_{6} - 22538212 \beta_{5} - 138945318 \beta_{4} - 136770 \beta_{3} + \cdots + 256176608 ) / 16 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 26933904 \beta_{7} - 84284211 \beta_{6} - 67581702 \beta_{5} - 416707411 \beta_{4} + \cdots + 337358391736 ) / 16 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 27854520120 \beta_{7} - 120253711402 \beta_{6} - 70435610012 \beta_{5} - 684731244834 \beta_{4} + \cdots + 1179857804000 ) / 16 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
175.1
−11.3732 13.2909i
12.3732 13.2909i
61.9270 7.28705i
−60.9270 7.28705i
61.9270 + 7.28705i
−60.9270 + 7.28705i
−11.3732 + 13.2909i
12.3732 + 13.2909i
0 26.5819i 0 −36.9191 0 −239.888 0 −463.596 0
175.2 0 26.5819i 0 −36.9191 0 239.888 0 −463.596 0
175.3 0 14.5741i 0 61.9191 0 −108.100 0 30.5956 0
175.4 0 14.5741i 0 61.9191 0 108.100 0 30.5956 0
175.5 0 14.5741i 0 61.9191 0 −108.100 0 30.5956 0
175.6 0 14.5741i 0 61.9191 0 108.100 0 30.5956 0
175.7 0 26.5819i 0 −36.9191 0 −239.888 0 −463.596 0
175.8 0 26.5819i 0 −36.9191 0 239.888 0 −463.596 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 175.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 176.6.e.c 8
4.b odd 2 1 inner 176.6.e.c 8
11.b odd 2 1 inner 176.6.e.c 8
44.c even 2 1 inner 176.6.e.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
176.6.e.c 8 1.a even 1 1 trivial
176.6.e.c 8 4.b odd 2 1 inner
176.6.e.c 8 11.b odd 2 1 inner
176.6.e.c 8 44.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 919T_{3}^{2} + 150084 \) acting on \(S_{6}^{\mathrm{new}}(176, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 919 T^{2} + 150084)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 25 T - 2286)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} - 69232 T^{2} + 672460800)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 67\!\cdots\!01 \) Copy content Toggle raw display
$13$ \( (T^{4} + 912784 T^{2} + 168904424448)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 3533392 T^{2} + 3707092992)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 2126128 T^{2} + 377714506752)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + \cdots + 85363997233284)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + \cdots + 10\!\cdots\!28)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 11477677652100)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 1661 T - 13047926)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots + 67\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 10\!\cdots\!08)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + \cdots + 26\!\cdots\!00)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 44100 T + 435560004)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 937504392372900)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 30\!\cdots\!72)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 12\!\cdots\!76)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 78\!\cdots\!04)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + \cdots + 73\!\cdots\!48)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 64\!\cdots\!68)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + \cdots + 15\!\cdots\!00)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 72657 T + 1303736310)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 148767 T + 807441950)^{4} \) Copy content Toggle raw display
show more
show less