Properties

Label 176.6.e.c
Level 176176
Weight 66
Character orbit 176.e
Analytic conductor 28.22828.228
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(175,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.175");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 176=2411 176 = 2^{4} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 176.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 28.227552287128.2275522871
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x84x77362x6+22100x5+14183534x428403906x3+315403855x2++1477121929252 x^{8} - 4 x^{7} - 7362 x^{6} + 22100 x^{5} + 14183534 x^{4} - 28403906 x^{3} + 315403855 x^{2} + \cdots + 1477121929252 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 216 2^{16}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ4q3+(β1+12)q5β7q7+(5β1219)q9+(β7+β6+4β4)q11β3q13+(3β6+14β4)q15++(604β7++2966β4)q99+O(q100) q - \beta_{4} q^{3} + (\beta_1 + 12) q^{5} - \beta_{7} q^{7} + (5 \beta_1 - 219) q^{9} + (\beta_{7} + \beta_{6} + \cdots - 4 \beta_{4}) q^{11} - \beta_{3} q^{13} + ( - 3 \beta_{6} + 14 \beta_{4}) q^{15}+ \cdots + ( - 604 \beta_{7} + \cdots + 2966 \beta_{4}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+100q51732q94212q2516588q33+6644q37+76040q45+142472q49176400q53114876q69155584q7729840q81+290628q89+313012q93595068q97+O(q100) 8 q + 100 q^{5} - 1732 q^{9} - 4212 q^{25} - 16588 q^{33} + 6644 q^{37} + 76040 q^{45} + 142472 q^{49} - 176400 q^{53} - 114876 q^{69} - 155584 q^{77} - 29840 q^{81} + 290628 q^{89} + 313012 q^{93} - 595068 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x84x77362x6+22100x5+14183534x428403906x3+315403855x2++1477121929252 x^{8} - 4 x^{7} - 7362 x^{6} + 22100 x^{5} + 14183534 x^{4} - 28403906 x^{3} + 315403855 x^{2} + \cdots + 1477121929252 : Copy content Toggle raw display

β1\beta_{1}== (76ν6+228ν5+412647ν4825674ν3+22803321ν2+1084025696458)/23022410833 ( - 76 \nu^{6} + 228 \nu^{5} + 412647 \nu^{4} - 825674 \nu^{3} + 22803321 \nu^{2} + \cdots - 1084025696458 ) / 23022410833 Copy content Toggle raw display
β2\beta_{2}== (161252ν6+483756ν5+2087234176ν44175274612ν3++10271975481128)/2279218672467 ( - 161252 \nu^{6} + 483756 \nu^{5} + 2087234176 \nu^{4} - 4175274612 \nu^{3} + \cdots + 10271975481128 ) / 2279218672467 Copy content Toggle raw display
β3\beta_{3}== (461842ν6+1385526ν5+3113454440ν46229218090ν3++107683947517024)/2279218672467 ( - 461842 \nu^{6} + 1385526 \nu^{5} + 3113454440 \nu^{4} - 6229218090 \nu^{3} + \cdots + 107683947517024 ) / 2279218672467 Copy content Toggle raw display
β4\beta_{4}== (115993072ν7+405975752ν6+801680254270ν52005215575055ν4++23 ⁣ ⁣98)/44 ⁣ ⁣95 ( - 115993072 \nu^{7} + 405975752 \nu^{6} + 801680254270 \nu^{5} - 2005215575055 \nu^{4} + \cdots + 23\!\cdots\!98 ) / 44\!\cdots\!95 Copy content Toggle raw display
β5\beta_{5}== (560777242ν71962720347ν62625291397405ν5+6568135294380ν4++49 ⁣ ⁣57)/13 ⁣ ⁣85 ( 560777242 \nu^{7} - 1962720347 \nu^{6} - 2625291397405 \nu^{5} + 6568135294380 \nu^{4} + \cdots + 49\!\cdots\!57 ) / 13\!\cdots\!85 Copy content Toggle raw display
β6\beta_{6}== (402051692ν71407180922ν63278956814096ν5+8200909987545ν4+10 ⁣ ⁣96)/26 ⁣ ⁣17 ( 402051692 \nu^{7} - 1407180922 \nu^{6} - 3278956814096 \nu^{5} + 8200909987545 \nu^{4} + \cdots - 10\!\cdots\!96 ) / 26\!\cdots\!17 Copy content Toggle raw display
β7\beta_{7}== (2314028092ν78099098322ν618288430196150ν5+45741323236180ν4++61 ⁣ ⁣72)/13 ⁣ ⁣85 ( 2314028092 \nu^{7} - 8099098322 \nu^{6} - 18288430196150 \nu^{5} + 45741323236180 \nu^{4} + \cdots + 61\!\cdots\!72 ) / 13\!\cdots\!85 Copy content Toggle raw display
ν\nu== (β62β59β4+8)/16 ( -\beta_{6} - 2\beta_{5} - 9\beta_{4} + 8 ) / 16 Copy content Toggle raw display
ν2\nu^{2}== (β62β59β412β3+6β2+608β1+29176)/16 ( -\beta_{6} - 2\beta_{5} - 9\beta_{4} - 12\beta_{3} + 6\beta_{2} + 608\beta _1 + 29176 ) / 16 Copy content Toggle raw display
ν3\nu^{3}== (2916β75970β66588β525714β418β3+9β2+912β1+43760)/16 ( 2916\beta_{7} - 5970\beta_{6} - 6588\beta_{5} - 25714\beta_{4} - 18\beta_{3} + 9\beta_{2} + 912\beta _1 + 43760 ) / 16 Copy content Toggle raw display
ν4\nu^{4}== (5832β711939β613174β551419β454720β3++102499816)/16 ( 5832 \beta_{7} - 11939 \beta_{6} - 13174 \beta_{5} - 51419 \beta_{4} - 54720 \beta_{3} + \cdots + 102499816 ) / 16 Copy content Toggle raw display
ν5\nu^{5}== (8982828β728104686β622538212β5138945318β4136770β3++256176608)/16 ( 8982828 \beta_{7} - 28104686 \beta_{6} - 22538212 \beta_{5} - 138945318 \beta_{4} - 136770 \beta_{3} + \cdots + 256176608 ) / 16 Copy content Toggle raw display
ν6\nu^{6}== (26933904β784284211β667581702β5416707411β4++337358391736)/16 ( 26933904 \beta_{7} - 84284211 \beta_{6} - 67581702 \beta_{5} - 416707411 \beta_{4} + \cdots + 337358391736 ) / 16 Copy content Toggle raw display
ν7\nu^{7}== (27854520120β7120253711402β670435610012β5684731244834β4++1179857804000)/16 ( 27854520120 \beta_{7} - 120253711402 \beta_{6} - 70435610012 \beta_{5} - 684731244834 \beta_{4} + \cdots + 1179857804000 ) / 16 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/176Z)×\left(\mathbb{Z}/176\mathbb{Z}\right)^\times.

nn 111111 133133 145145
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
175.1
−11.3732 13.2909i
12.3732 13.2909i
61.9270 7.28705i
−60.9270 7.28705i
61.9270 + 7.28705i
−60.9270 + 7.28705i
−11.3732 + 13.2909i
12.3732 + 13.2909i
0 26.5819i 0 −36.9191 0 −239.888 0 −463.596 0
175.2 0 26.5819i 0 −36.9191 0 239.888 0 −463.596 0
175.3 0 14.5741i 0 61.9191 0 −108.100 0 30.5956 0
175.4 0 14.5741i 0 61.9191 0 108.100 0 30.5956 0
175.5 0 14.5741i 0 61.9191 0 −108.100 0 30.5956 0
175.6 0 14.5741i 0 61.9191 0 108.100 0 30.5956 0
175.7 0 26.5819i 0 −36.9191 0 −239.888 0 −463.596 0
175.8 0 26.5819i 0 −36.9191 0 239.888 0 −463.596 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 175.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 176.6.e.c 8
4.b odd 2 1 inner 176.6.e.c 8
11.b odd 2 1 inner 176.6.e.c 8
44.c even 2 1 inner 176.6.e.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
176.6.e.c 8 1.a even 1 1 trivial
176.6.e.c 8 4.b odd 2 1 inner
176.6.e.c 8 11.b odd 2 1 inner
176.6.e.c 8 44.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+919T32+150084 T_{3}^{4} + 919T_{3}^{2} + 150084 acting on S6new(176,[χ])S_{6}^{\mathrm{new}}(176, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T4+919T2+150084)2 (T^{4} + 919 T^{2} + 150084)^{2} Copy content Toggle raw display
55 (T225T2286)4 (T^{2} - 25 T - 2286)^{4} Copy content Toggle raw display
77 (T469232T2+672460800)2 (T^{4} - 69232 T^{2} + 672460800)^{2} Copy content Toggle raw display
1111 T8++67 ⁣ ⁣01 T^{8} + \cdots + 67\!\cdots\!01 Copy content Toggle raw display
1313 (T4+912784T2+168904424448)2 (T^{4} + 912784 T^{2} + 168904424448)^{2} Copy content Toggle raw display
1717 (T4+3533392T2+3707092992)2 (T^{4} + 3533392 T^{2} + 3707092992)^{2} Copy content Toggle raw display
1919 (T42126128T2+377714506752)2 (T^{4} - 2126128 T^{2} + 377714506752)^{2} Copy content Toggle raw display
2323 (T4++85363997233284)2 (T^{4} + \cdots + 85363997233284)^{2} Copy content Toggle raw display
2929 (T4++10 ⁣ ⁣28)2 (T^{4} + \cdots + 10\!\cdots\!28)^{2} Copy content Toggle raw display
3131 (T4++11477677652100)2 (T^{4} + \cdots + 11477677652100)^{2} Copy content Toggle raw display
3737 (T21661T13047926)4 (T^{2} - 1661 T - 13047926)^{4} Copy content Toggle raw display
4141 (T4++67 ⁣ ⁣00)2 (T^{4} + \cdots + 67\!\cdots\!00)^{2} Copy content Toggle raw display
4343 (T4++10 ⁣ ⁣08)2 (T^{4} + \cdots + 10\!\cdots\!08)^{2} Copy content Toggle raw display
4747 (T4++26 ⁣ ⁣00)2 (T^{4} + \cdots + 26\!\cdots\!00)^{2} Copy content Toggle raw display
5353 (T2+44100T+435560004)4 (T^{2} + 44100 T + 435560004)^{4} Copy content Toggle raw display
5959 (T4++937504392372900)2 (T^{4} + \cdots + 937504392372900)^{2} Copy content Toggle raw display
6161 (T4++30 ⁣ ⁣72)2 (T^{4} + \cdots + 30\!\cdots\!72)^{2} Copy content Toggle raw display
6767 (T4++12 ⁣ ⁣76)2 (T^{4} + \cdots + 12\!\cdots\!76)^{2} Copy content Toggle raw display
7171 (T4++78 ⁣ ⁣04)2 (T^{4} + \cdots + 78\!\cdots\!04)^{2} Copy content Toggle raw display
7373 (T4++73 ⁣ ⁣48)2 (T^{4} + \cdots + 73\!\cdots\!48)^{2} Copy content Toggle raw display
7979 (T4++64 ⁣ ⁣68)2 (T^{4} + \cdots + 64\!\cdots\!68)^{2} Copy content Toggle raw display
8383 (T4++15 ⁣ ⁣00)2 (T^{4} + \cdots + 15\!\cdots\!00)^{2} Copy content Toggle raw display
8989 (T272657T+1303736310)4 (T^{2} - 72657 T + 1303736310)^{4} Copy content Toggle raw display
9797 (T2+148767T+807441950)4 (T^{2} + 148767 T + 807441950)^{4} Copy content Toggle raw display
show more
show less