L(s) = 1 | − 26.5i·3-s − 36.9·5-s + 239.·7-s − 463.·9-s + (−334. − 221. i)11-s − 809. i·13-s + 981. i·15-s − 32.3i·17-s − 1.38e3·19-s − 6.37e3i·21-s − 2.85e3i·23-s − 1.76e3·25-s + 5.86e3i·27-s + 5.50e3i·29-s + 3.47e3i·31-s + ⋯ |
L(s) = 1 | − 1.70i·3-s − 0.660·5-s + 1.85·7-s − 1.90·9-s + (−0.834 − 0.551i)11-s − 1.32i·13-s + 1.12i·15-s − 0.0271i·17-s − 0.882·19-s − 3.15i·21-s − 1.12i·23-s − 0.563·25-s + 1.54i·27-s + 1.21i·29-s + 0.650i·31-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)(−0.834−0.551i)Λ(6−s)
Λ(s)=(=(176s/2ΓC(s+5/2)L(s)(−0.834−0.551i)Λ(1−s)
Degree: |
2 |
Conductor: |
176
= 24⋅11
|
Sign: |
−0.834−0.551i
|
Analytic conductor: |
28.2275 |
Root analytic conductor: |
5.31296 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ176(175,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 176, ( :5/2), −0.834−0.551i)
|
Particular Values
L(3) |
≈ |
1.101725069 |
L(21) |
≈ |
1.101725069 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(334.+221.i)T |
good | 3 | 1+26.5iT−243T2 |
| 5 | 1+36.9T+3.12e3T2 |
| 7 | 1−239.T+1.68e4T2 |
| 13 | 1+809.iT−3.71e5T2 |
| 17 | 1+32.3iT−1.41e6T2 |
| 19 | 1+1.38e3T+2.47e6T2 |
| 23 | 1+2.85e3iT−6.43e6T2 |
| 29 | 1−5.50e3iT−2.05e7T2 |
| 31 | 1−3.47e3iT−2.86e7T2 |
| 37 | 1−4.53e3T+6.93e7T2 |
| 41 | 1−5.08e3iT−1.15e8T2 |
| 43 | 1−4.92e3T+1.47e8T2 |
| 47 | 1−2.29e4iT−2.29e8T2 |
| 53 | 1+2.91e4T+4.18e8T2 |
| 59 | 1+2.19e4iT−7.14e8T2 |
| 61 | 1+4.58e4iT−8.44e8T2 |
| 67 | 1−3.44e4iT−1.35e9T2 |
| 71 | 1−4.48e4iT−1.80e9T2 |
| 73 | 1+7.78e4iT−2.07e9T2 |
| 79 | 1+3.65e4T+3.07e9T2 |
| 83 | 1+8.73e4T+3.93e9T2 |
| 89 | 1−3.23e4T+5.58e9T2 |
| 97 | 1+5.64e3T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25092766470513776955844243682, −10.77667363786424637878241742354, −8.332299085563701470500004290952, −8.173401587359646823939500531801, −7.34471824310460511418831974523, −5.95787616937708341107192528055, −4.81036657012217212531437740192, −2.79669057717730306235889548124, −1.51830898195249978888536874360, −0.34770020171799485587626065041,
2.11742681877453322650657300623, 4.07965047917725690850330917900, 4.49445134775857577540973376391, 5.55119998612726417047264064492, 7.57465773464946439799922231242, 8.424609167784472321516794241052, 9.461917974429044934909071378724, 10.50138967514065633632960139976, 11.36453984169423526257358379034, 11.78840516819466987829211805468