L(s) = 1 | − 26.5i·3-s − 36.9·5-s + 239.·7-s − 463.·9-s + (−334. − 221. i)11-s − 809. i·13-s + 981. i·15-s − 32.3i·17-s − 1.38e3·19-s − 6.37e3i·21-s − 2.85e3i·23-s − 1.76e3·25-s + 5.86e3i·27-s + 5.50e3i·29-s + 3.47e3i·31-s + ⋯ |
L(s) = 1 | − 1.70i·3-s − 0.660·5-s + 1.85·7-s − 1.90·9-s + (−0.834 − 0.551i)11-s − 1.32i·13-s + 1.12i·15-s − 0.0271i·17-s − 0.882·19-s − 3.15i·21-s − 1.12i·23-s − 0.563·25-s + 1.54i·27-s + 1.21i·29-s + 0.650i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.834 - 0.551i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.834 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.101725069\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.101725069\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (334. + 221. i)T \) |
good | 3 | \( 1 + 26.5iT - 243T^{2} \) |
| 5 | \( 1 + 36.9T + 3.12e3T^{2} \) |
| 7 | \( 1 - 239.T + 1.68e4T^{2} \) |
| 13 | \( 1 + 809. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 32.3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 1.38e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 2.85e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 5.50e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 3.47e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 4.53e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 5.08e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 4.92e3T + 1.47e8T^{2} \) |
| 47 | \( 1 - 2.29e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 2.91e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 2.19e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 + 4.58e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 - 3.44e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 4.48e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 7.78e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 3.65e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 8.73e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 3.23e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 5.64e3T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.25092766470513776955844243682, −10.77667363786424637878241742354, −8.332299085563701470500004290952, −8.173401587359646823939500531801, −7.34471824310460511418831974523, −5.95787616937708341107192528055, −4.81036657012217212531437740192, −2.79669057717730306235889548124, −1.51830898195249978888536874360, −0.34770020171799485587626065041,
2.11742681877453322650657300623, 4.07965047917725690850330917900, 4.49445134775857577540973376391, 5.55119998612726417047264064492, 7.57465773464946439799922231242, 8.424609167784472321516794241052, 9.461917974429044934909071378724, 10.50138967514065633632960139976, 11.36453984169423526257358379034, 11.78840516819466987829211805468