Properties

Label 2-176-44.43-c5-0-29
Degree $2$
Conductor $176$
Sign $-0.834 - 0.551i$
Analytic cond. $28.2275$
Root an. cond. $5.31296$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 26.5i·3-s − 36.9·5-s + 239.·7-s − 463.·9-s + (−334. − 221. i)11-s − 809. i·13-s + 981. i·15-s − 32.3i·17-s − 1.38e3·19-s − 6.37e3i·21-s − 2.85e3i·23-s − 1.76e3·25-s + 5.86e3i·27-s + 5.50e3i·29-s + 3.47e3i·31-s + ⋯
L(s)  = 1  − 1.70i·3-s − 0.660·5-s + 1.85·7-s − 1.90·9-s + (−0.834 − 0.551i)11-s − 1.32i·13-s + 1.12i·15-s − 0.0271i·17-s − 0.882·19-s − 3.15i·21-s − 1.12i·23-s − 0.563·25-s + 1.54i·27-s + 1.21i·29-s + 0.650i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.834 - 0.551i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.834 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(176\)    =    \(2^{4} \cdot 11\)
Sign: $-0.834 - 0.551i$
Analytic conductor: \(28.2275\)
Root analytic conductor: \(5.31296\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{176} (175, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 176,\ (\ :5/2),\ -0.834 - 0.551i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.101725069\)
\(L(\frac12)\) \(\approx\) \(1.101725069\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + (334. + 221. i)T \)
good3 \( 1 + 26.5iT - 243T^{2} \)
5 \( 1 + 36.9T + 3.12e3T^{2} \)
7 \( 1 - 239.T + 1.68e4T^{2} \)
13 \( 1 + 809. iT - 3.71e5T^{2} \)
17 \( 1 + 32.3iT - 1.41e6T^{2} \)
19 \( 1 + 1.38e3T + 2.47e6T^{2} \)
23 \( 1 + 2.85e3iT - 6.43e6T^{2} \)
29 \( 1 - 5.50e3iT - 2.05e7T^{2} \)
31 \( 1 - 3.47e3iT - 2.86e7T^{2} \)
37 \( 1 - 4.53e3T + 6.93e7T^{2} \)
41 \( 1 - 5.08e3iT - 1.15e8T^{2} \)
43 \( 1 - 4.92e3T + 1.47e8T^{2} \)
47 \( 1 - 2.29e4iT - 2.29e8T^{2} \)
53 \( 1 + 2.91e4T + 4.18e8T^{2} \)
59 \( 1 + 2.19e4iT - 7.14e8T^{2} \)
61 \( 1 + 4.58e4iT - 8.44e8T^{2} \)
67 \( 1 - 3.44e4iT - 1.35e9T^{2} \)
71 \( 1 - 4.48e4iT - 1.80e9T^{2} \)
73 \( 1 + 7.78e4iT - 2.07e9T^{2} \)
79 \( 1 + 3.65e4T + 3.07e9T^{2} \)
83 \( 1 + 8.73e4T + 3.93e9T^{2} \)
89 \( 1 - 3.23e4T + 5.58e9T^{2} \)
97 \( 1 + 5.64e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.25092766470513776955844243682, −10.77667363786424637878241742354, −8.332299085563701470500004290952, −8.173401587359646823939500531801, −7.34471824310460511418831974523, −5.95787616937708341107192528055, −4.81036657012217212531437740192, −2.79669057717730306235889548124, −1.51830898195249978888536874360, −0.34770020171799485587626065041, 2.11742681877453322650657300623, 4.07965047917725690850330917900, 4.49445134775857577540973376391, 5.55119998612726417047264064492, 7.57465773464946439799922231242, 8.424609167784472321516794241052, 9.461917974429044934909071378724, 10.50138967514065633632960139976, 11.36453984169423526257358379034, 11.78840516819466987829211805468

Graph of the $Z$-function along the critical line