L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s − 0.999i·8-s + (−1.73 + i)11-s + (−0.5 + 0.866i)16-s + 1.99·22-s + (1.73 + i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.499i)32-s + (−1 + 1.73i)37-s + (−1.73 − 0.999i)44-s + (−0.999 − 1.73i)46-s − 0.999i·50-s − 0.999·64-s + 2i·71-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s − 0.999i·8-s + (−1.73 + i)11-s + (−0.5 + 0.866i)16-s + 1.99·22-s + (1.73 + i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.499i)32-s + (−1 + 1.73i)37-s + (−1.73 − 0.999i)44-s + (−0.999 − 1.73i)46-s − 0.999i·50-s − 0.999·64-s + 2i·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5869705535\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5869705535\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 2iT - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.706769129691241505604179192285, −8.877359005296056440187324528902, −8.105007153093755029020923519337, −7.32152872094821419581859032643, −6.87157246585498388548340881002, −5.42616194856615565403755394025, −4.71714491947273489038642057406, −3.34078547643171601110707041047, −2.61889142530479702165042925502, −1.44193440244662016617745613553,
0.60097015769081178863827817118, 2.29251402830539862297653218458, 3.13222330033251035775996215260, 4.78997946875933757265319941348, 5.42966471062023955239344779615, 6.27756029136800055621069338263, 7.15292978823360098662071039641, 7.87451798494159881769975370341, 8.613029783060397991315509707163, 9.100777793763634865762488981956