L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s − 0.999i·8-s + (−1.73 + i)11-s + (−0.5 + 0.866i)16-s + 1.99·22-s + (1.73 + i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.499i)32-s + (−1 + 1.73i)37-s + (−1.73 − 0.999i)44-s + (−0.999 − 1.73i)46-s − 0.999i·50-s − 0.999·64-s + 2i·71-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s − 0.999i·8-s + (−1.73 + i)11-s + (−0.5 + 0.866i)16-s + 1.99·22-s + (1.73 + i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.499i)32-s + (−1 + 1.73i)37-s + (−1.73 − 0.999i)44-s + (−0.999 − 1.73i)46-s − 0.999i·50-s − 0.999·64-s + 2i·71-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.605−0.795i)Λ(1−s)
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
0.880350 |
Root analytic conductor: |
0.938270 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(667,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :0), 0.605−0.795i)
|
Particular Values
L(21) |
≈ |
0.5869705535 |
L(21) |
≈ |
0.5869705535 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−0.5−0.866i)T2 |
| 11 | 1+(1.73−i)T+(0.5−0.866i)T2 |
| 13 | 1+T2 |
| 17 | 1+(−0.5+0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 29 | 1+T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1−T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−2iT−T2 |
| 73 | 1+(−0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(−0.5−0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.706769129691241505604179192285, −8.877359005296056440187324528902, −8.105007153093755029020923519337, −7.32152872094821419581859032643, −6.87157246585498388548340881002, −5.42616194856615565403755394025, −4.71714491947273489038642057406, −3.34078547643171601110707041047, −2.61889142530479702165042925502, −1.44193440244662016617745613553,
0.60097015769081178863827817118, 2.29251402830539862297653218458, 3.13222330033251035775996215260, 4.78997946875933757265319941348, 5.42966471062023955239344779615, 6.27756029136800055621069338263, 7.15292978823360098662071039641, 7.87451798494159881769975370341, 8.613029783060397991315509707163, 9.100777793763634865762488981956