Properties

Label 2-42e2-28.23-c0-0-1
Degree $2$
Conductor $1764$
Sign $0.605 - 0.795i$
Analytic cond. $0.880350$
Root an. cond. $0.938270$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s − 0.999i·8-s + (−1.73 + i)11-s + (−0.5 + 0.866i)16-s + 1.99·22-s + (1.73 + i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.499i)32-s + (−1 + 1.73i)37-s + (−1.73 − 0.999i)44-s + (−0.999 − 1.73i)46-s − 0.999i·50-s − 0.999·64-s + 2i·71-s + ⋯
L(s)  = 1  + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s − 0.999i·8-s + (−1.73 + i)11-s + (−0.5 + 0.866i)16-s + 1.99·22-s + (1.73 + i)23-s + (0.5 + 0.866i)25-s + (0.866 − 0.499i)32-s + (−1 + 1.73i)37-s + (−1.73 − 0.999i)44-s + (−0.999 − 1.73i)46-s − 0.999i·50-s − 0.999·64-s + 2i·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $0.605 - 0.795i$
Analytic conductor: \(0.880350\)
Root analytic conductor: \(0.938270\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1764} (667, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :0),\ 0.605 - 0.795i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5869705535\)
\(L(\frac12)\) \(\approx\) \(0.5869705535\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 + 0.5i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 + (-0.5 + 0.866i)T^{2} \)
19 \( 1 + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 + (0.5 - 0.866i)T^{2} \)
37 \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + (0.5 + 0.866i)T^{2} \)
53 \( 1 + (-0.5 + 0.866i)T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (0.5 - 0.866i)T^{2} \)
71 \( 1 - 2iT - T^{2} \)
73 \( 1 + (-0.5 + 0.866i)T^{2} \)
79 \( 1 + (0.5 + 0.866i)T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + (-0.5 - 0.866i)T^{2} \)
97 \( 1 + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.706769129691241505604179192285, −8.877359005296056440187324528902, −8.105007153093755029020923519337, −7.32152872094821419581859032643, −6.87157246585498388548340881002, −5.42616194856615565403755394025, −4.71714491947273489038642057406, −3.34078547643171601110707041047, −2.61889142530479702165042925502, −1.44193440244662016617745613553, 0.60097015769081178863827817118, 2.29251402830539862297653218458, 3.13222330033251035775996215260, 4.78997946875933757265319941348, 5.42966471062023955239344779615, 6.27756029136800055621069338263, 7.15292978823360098662071039641, 7.87451798494159881769975370341, 8.613029783060397991315509707163, 9.100777793763634865762488981956

Graph of the $Z$-function along the critical line