Properties

Label 1764.1.y.c
Level $1764$
Weight $1$
Character orbit 1764.y
Analytic conductor $0.880$
Analytic rank $0$
Dimension $4$
Projective image $D_{2}$
CM/RM discs -7, -84, 12
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,1,Mod(667,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.667");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1764.y (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.880350682285\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{3}, \sqrt{-7})\)
Artin image: $D_4:C_6$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{24} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12} q^{2} + \zeta_{12}^{2} q^{4} - \zeta_{12}^{3} q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{12} q^{2} + \zeta_{12}^{2} q^{4} - \zeta_{12}^{3} q^{8} + 2 \zeta_{12}^{5} q^{11} + \zeta_{12}^{4} q^{16} + 2 q^{22} + 2 \zeta_{12} q^{23} + \zeta_{12}^{2} q^{25} - \zeta_{12}^{5} q^{32} + 2 \zeta_{12}^{4} q^{37} - 2 \zeta_{12} q^{44} - 2 \zeta_{12}^{2} q^{46} - \zeta_{12}^{3} q^{50} - q^{64} + 2 \zeta_{12}^{3} q^{71} - 2 \zeta_{12}^{5} q^{74} + 2 \zeta_{12}^{2} q^{88} + 2 \zeta_{12}^{3} q^{92} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 2 q^{16} + 8 q^{22} + 2 q^{25} - 4 q^{37} - 4 q^{46} - 4 q^{64} + 4 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{12}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
667.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i 0 0.500000 + 0.866025i 0 0 0 1.00000i 0 0
667.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0 0 1.00000i 0 0
1243.1 −0.866025 + 0.500000i 0 0.500000 0.866025i 0 0 0 1.00000i 0 0
1243.2 0.866025 0.500000i 0 0.500000 0.866025i 0 0 0 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
12.b even 2 1 RM by \(\Q(\sqrt{3}) \)
84.h odd 2 1 CM by \(\Q(\sqrt{-21}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
21.c even 2 1 inner
21.g even 6 1 inner
21.h odd 6 1 inner
28.d even 2 1 inner
28.f even 6 1 inner
28.g odd 6 1 inner
84.j odd 6 1 inner
84.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.1.y.c 4
3.b odd 2 1 inner 1764.1.y.c 4
4.b odd 2 1 inner 1764.1.y.c 4
7.b odd 2 1 CM 1764.1.y.c 4
7.c even 3 1 1764.1.g.c 2
7.c even 3 1 inner 1764.1.y.c 4
7.d odd 6 1 1764.1.g.c 2
7.d odd 6 1 inner 1764.1.y.c 4
12.b even 2 1 RM 1764.1.y.c 4
21.c even 2 1 inner 1764.1.y.c 4
21.g even 6 1 1764.1.g.c 2
21.g even 6 1 inner 1764.1.y.c 4
21.h odd 6 1 1764.1.g.c 2
21.h odd 6 1 inner 1764.1.y.c 4
28.d even 2 1 inner 1764.1.y.c 4
28.f even 6 1 1764.1.g.c 2
28.f even 6 1 inner 1764.1.y.c 4
28.g odd 6 1 1764.1.g.c 2
28.g odd 6 1 inner 1764.1.y.c 4
84.h odd 2 1 CM 1764.1.y.c 4
84.j odd 6 1 1764.1.g.c 2
84.j odd 6 1 inner 1764.1.y.c 4
84.n even 6 1 1764.1.g.c 2
84.n even 6 1 inner 1764.1.y.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1764.1.g.c 2 7.c even 3 1
1764.1.g.c 2 7.d odd 6 1
1764.1.g.c 2 21.g even 6 1
1764.1.g.c 2 21.h odd 6 1
1764.1.g.c 2 28.f even 6 1
1764.1.g.c 2 28.g odd 6 1
1764.1.g.c 2 84.j odd 6 1
1764.1.g.c 2 84.n even 6 1
1764.1.y.c 4 1.a even 1 1 trivial
1764.1.y.c 4 3.b odd 2 1 inner
1764.1.y.c 4 4.b odd 2 1 inner
1764.1.y.c 4 7.b odd 2 1 CM
1764.1.y.c 4 7.c even 3 1 inner
1764.1.y.c 4 7.d odd 6 1 inner
1764.1.y.c 4 12.b even 2 1 RM
1764.1.y.c 4 21.c even 2 1 inner
1764.1.y.c 4 21.g even 6 1 inner
1764.1.y.c 4 21.h odd 6 1 inner
1764.1.y.c 4 28.d even 2 1 inner
1764.1.y.c 4 28.f even 6 1 inner
1764.1.y.c 4 28.g odd 6 1 inner
1764.1.y.c 4 84.h odd 2 1 CM
1764.1.y.c 4 84.j odd 6 1 inner
1764.1.y.c 4 84.n even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1764, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11}^{4} - 4T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{29} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less